We saw for $z=f(x,y)$ that its partial derivatives $f_x(x,y)$ and $f_y(x,y)$ are functions of $x$ and $y$. Therefore we can consider their partial derivatives $(f_x)_x(x,y)$, $(f_x)_y(x,y)$, $(f_y)_x(x,y)$, and $(f_y)_y(x,y)$. These partial derivatives are called the second partial derivatives of $f$.
- Note that $\frac{\partial^2 f}{\partial y\partial x}$ means we first differentiate with respect to $x$ and then with respect to $y$, while for $\frac{\partial^2 f}{\partial x\partial y}$ we first differentiate with respect to $y$ and then with respect to $x$.
Read more on common notations and higher than two partial derivaitves
Show less
\begin{align*}
&(f_x)_x=f_{xx}=f_{11}=D_{11}f=\partial_{xx}f=\partial_{xx}z=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^2 f}{\partial x^2}=\frac{\partial^2 z}{\partial x^2}\\
&(f_x)_y=f_{xy}=f_{12}=D_{12}f=\partial_{xy}f=\partial_{xy}z=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^2 f}{\partial y \partial x}=\frac{\partial^2 z}{\partial y\partial x}\\
&(f_y)_x=f_{yx}=f_{21}=D_{21}f=\partial_{yx}f=\partial_{yx}z=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^2 f}{\partial x \partial y}=\frac{\partial^2 z}{\partial x\partial y}\\
&(f_y)_y=f_{yy}=f_{22}=D_{22}f=\partial_{yy}f=\partial_{yy}z=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^2 f}{\partial y^2}=\frac{\partial^2 z}{\partial y^2}\\
\end{align*}
$$g_{xx},\ g_{xy},\ g_{xz},\ g_{yx},\ g_{yy},\ g_{yz},\ g_{zx},\ g_{zy},\ g_{zz}$$
\begin{align*}
&f_{xxx}=\frac{\partial^3 f}{\partial x^3},\ f_{xxy}=\frac{\partial^3 f}{\partial y\partial x^2},\ f_{xyx}=\frac{\partial^3 f}{\partial x\partial y\partial x},\ f_{xyy}=\frac{\partial^3 f}{\partial y^2 \partial x},\\
&f_{yxx}=\frac{\partial^3 f}{\partial x^2 \partial y},\ f_{yxy}=\frac{\partial f}{\partial y\partial x \partial y},\ f_{yyx}=\frac{\partial^3 f}{\partial x\partial y^2},\ f_{yyy}=\frac{\partial^3 f}{\partial y^3}
\end{align*}
\begin{align*}
\frac{\partial}{\partial x}\left(\frac{\partial^{n-1} f}{\partial x^{n-1} f}\right)&=\frac{\partial^n f}{\partial x^n}=f_{\underbrace{xx\cdots x}_{n \text{ times}}}\\
\frac{\partial}{\partial y}\left(\frac{\partial^{n-1} f}{\partial x^{n-1} f}\right)&=\frac{\partial^n f}{\partial y \partial x^{n-1}}=f_{\underbrace{x\cdots x}_{(n-1) \text{ times}}y}\\
&\vdots
\end{align*}
$$f_{xxyyx}=\frac{\partial^5 f}{\partial x\partial y^2\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}\left(\frac{\partial}{\partial y}\left(\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)\right)\right)\right)$$
However we will learn that the order we carry out differentiations does not matter in almost all cases.
The equality of $f_{xy}$ and $f_{yx}$ in Example 1, and equality of $f_{xxz}$, $f_{xzx}$ and $f_{zxx}$ in Example 2 are not coincidence:
$$\frac{\partial^2 f}{\partial x \partial y}(x,y)=\frac{\partial^2 f}{\partial y \partial x}(x,y)$$
The above theorem leads to this result that for any number of differentiations or variables involved the order of differentiation is immaterial provided the assumption of the continuity of the functions holds true.
For example, for $z=f(x,y)$ we know: Read more on equality of mixed partial derivatives
Show less
$$\frac{\partial}{\partial y}\left(\frac{\partial}{\partial x}f\right)=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}f\right)$$
If we replace $f$ by $f_x=\frac{\partial f}{\partial x}$, we will obtain
$$\frac{\partial}{\partial y}\left(\frac{\partial}{\partial x}f_x\right)=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}f_x\right)\quad \text{or}\quad
\frac{\partial}{\partial y}\left(\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}f\right)\right)=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}\left(\frac{\partial}{\partial x}f\right)\right)$$
and by interchanging the order of two differentiations:
$$\frac{\partial}{\partial x}\left(\frac{\partial}{\partial {\color{red}y}}\left(\frac{\partial}{\partial {\color{red}x}}f\right)\right)=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial {\color{red} x}}\left(\frac{\partial}{\partial {\color{red} y}}f\right)\right).$$
So we can conclude:
$$\frac{\partial^3 f}{\partial y \partial x^2}=\frac{\partial^3 f}{\partial x \partial y \partial x}=\frac{\partial^3 f}{\partial x^2 \partial y}.$$