We shall now give the alternative form of the proof of Taylor’s Theorem to which we alluded in § 147.

Let f(x) be a function whose first n derivatives are continuous, and let Fn(x)=f(b)f(x)(bx)f(x)(bx)n1(n1)!f(n1)(x).

Then Fn(x)=(bx)n1(n1)!f(n)(x), and so Fn(a)=Fn(b)abFn(x)dx=1(n1)!ab(bx)n1f(n)(x)dx. If now we write a+h for b, and transform the integral by putting x=a+th, we obtain (1)f(a+h)=f(a)+hf(a)++hn1(n1)!f(n1)(a)+Rn, where (2)Rn=hn(n1)!01(1t)n1f(n)(a+th)dt.

Now, if p is any positive integer not greater than n, we have, by Theorem (9) of § 160, 01(1t)n1f(n)(a+th)dt=01(1t)np(1t)p1f(n)(a+th)dt=(1θ)npf(n)(a+θh)01(1t)p1dt, where 0<θ<1. Hence (3)Rn=(1θ)npf(n)(a+θh)hnp(n1)!.

If we take p=n we obtain Lagrange’s form of Rn (§ 148). If on the other hand we take p=1 we obtain Cauchy’s form, viz. (4)Rn=(1θ)n1f(n)(a+θh)hn(n1)!.


156-161. Definite Integrals. Areas of curves Main Page 163. Application to the binomial series