A Note on Double Limit Problems
In the course of Chapters IX and X we came on several occasions into contact with problems of a kind which invariably puzzle beginners and are indeed, when treated in their most general forms, problems of great difficulty and of the utmost interest and importance in higher mathematics.
Let us consider some special instances. In § 213 we proved that
Again, in § 216, we proved that the differential coefficient of the exponential function
Finally we proved incidentally in the same section that the function
In each of these cases we gave a special proof of the correctness of the result. We have not proved, and in this volume shall not prove, any general theorem from which the truth of any one of them could be inferred immediately. In Ex. XXXVII. 1 we saw that the sum of a finite number of continuous terms is itself continuous, and in § 113 that the differential coefficient of the sum of a finite number of terms is equal to the sum of their differential coefficients; and in § 160 we stated the corresponding theorem for integrals. Thus we have proved that in certain circumstances the operations symbolised by
A few further instances of commutative and non-commutative operations may help to elucidate these points.
(1) Multiplication by
(2) The operation of taking the real part of
(3) The operations of proceeding to the limit zero with each of two variables
(4) The operations
The preceding examples suggest that there are three possibilities with respect to the commutation of two given operations, viz.: (1) the operations may always be commutative; (2) they may never be commutative, except in very special circumstances; (3) they may be commutative in most of the ordinary cases which occur practically.
The really important case (as is suggested by the instances which we gave from Ch. IX) is that in which each operation is one which involves a passage to the limit, such as a differentiation or the summation of an infinite series: such operations are called limit operations. The general question as to the circumstances in which two given limit operations are commutative is one of the most important in all mathematics. But to attempt to deal with questions of this character by means of general theorems would carry us far beyond the scope of this volume.
We may however remark that the answer to the general question is on the lines suggested by the examples above. If
Of course, in an exact science like pure mathematics, we cannot be satisfied with an answer of this kind; and in the higher branches of mathematics the detailed investigation of these questions is an absolute necessity. But for the present the reader may be content if he realises the point of the remarks which we have just made. In practice, a result obtained by assuming that two limit-operations are commutative is probably true: it at any rate affords a valuable suggestion as to the answer to the problem under consideration. But an answer thus obtained must, in default of a further study of the general question or a special investigation of the particular problem, such as we gave in the instances which occurred in Ch. IX, be regarded as suggested only and not proved.
Detailed investigations of a large number of important double limit problems will be found in Bromwich’s Infinite Series.
Main Page | Appendix III |