Let us suppose that the polar coordinates of the point z=ζ are ρ and ϕ, so that ζ=ρ(cosϕ+isinϕ). We suppose for the present that π<ϕ<π, while ρ may have any positive value. Thus ζ may have any value other than zero or a real negative value.

The coordinates (x,y) of any point on the path C are functions of t, and so also are its polar coordinates (r,θ). Also logζ=Cdzz=Cdx+idyx+iy=t0t11x+iy(dxdt+idydt)dt, in virtue of the definitions of § 219. But x=rcosθ, y=rsinθ, and dxdt+idydt=(cosθdrdtrsinθdθdt)+i(sinθdrdt+rcosθdθdt)=(cosθ+isinθ)(drdt+irdθdt); so that logζ=t0t11rdrdtdt+it0t1dθdtdt=[logr]+i[θ], where [logr] denotes the difference between the values of logr at the points corresponding to t=t1 and t=t0, and [θ] has a similar meaning.

It is clear that [logr]=logρlog1=logρ; but the value of [θ] requires a little more consideration. Let us suppose first that the path of integration is the straight line from 1 to ζ. The initial value of θ is the amplitude of 1, or rather one of the amplitudes of 1, viz. 2kπ, where k is any integer. Let us suppose that initially θ=2kπ. It is evident from the figure that θ increases from 2kπ to 2kπ+ϕ as t moves along the line. Thus [θ]=(2kπ+ϕ)2kπ=ϕ, and, when the path of integration is a straight line, logζ=logρ+iϕ.

We shall call this particular value of logζ the principal value. When ζ is real and positive, ζ=ρ and ϕ=0, so that the principal value of logζ is the ordinary logarithm logζ. Hence it will be convenient in general to denote the principal value of logζ by logζ. Thus logζ=logρ+iϕ, and the principal value is characterised by the fact that its imaginary part lies between π and π.

Next let us consider any path (such as those shown in Fig. 56) such that the area or areas included between the path and the straight line from 1 to ζ does not include the origin.

It is easy to see that [θ] is still equal to ϕ. Along the curve shown in the figure by a continuous line, for example, θ, initially equal to 2kπ, first decreases to the value 2kπXOP and then increases again, being equal to 2kπ at Q, and finally to 2kπ+ϕ. The dotted curve shows a similar but slightly more complicated case in which the straight line and the curve bound two areas, neither of which includes the origin. Thus if the path of integration is such that the closed curve formed by it and the line from 1 to ζ does not include the origin, then logζ=logζ=logρ+iϕ.

On the other hand it is easy to construct paths of integration such that [θ] is not equal to ϕ. Consider, for example, the curve indicated by a continuous line in Fig. 57. If θ is initially equal to 2kπ, it will have increased by 2π when we get to P and by 4π when we get to Q; and its final value will be 2kπ+4π+ϕ, so that [θ]=4π+ϕ and logζ=logρ+i(4π+ϕ).

In this case the path of integration winds twice round the origin in the positive sense. If we had taken a path winding k times round the origin we should have found, in a precisely similar way, that [θ]=2kπ+ϕ and logζ=logρ+i(2kπ+ϕ). Here k is positive. By making the path wind round the origin in the opposite direction (as shown in the dotted path in Fig. 57), we obtain a similar series of values in which k is negative. Since |ζ|=ρ, and the different angles 2kπ+ϕ are the different values of amζ, we conclude that every value of log|ζ|+iamζ is a value of logζ; and it is clear from the preceding discussion that every value of logζ must be of this form.

We may summarise our conclusions as follows:

the general value of logζ is log|ζ|+iamζ=logρ+i(2kπ+ϕ), where k is any positive or negative integer. The value of k is determined by the path of integration chosen. If this path is a straight line then k=0 and logζ=logζ=logρ+iϕ.

In what precedes we have used ζ to denote the argument of the function logζ, and (ξ,η) or (ρ,ϕ) to denote the coordinates of ζ; and z, (x,y), (r,θ) to denote an arbitrary point on the path of integration and its coordinates. There is however no reason now why we should not revert to the natural notation in which z is used as the argument of the function logz, and we shall do this in the following examples.

Example XCIII
1. We supposed above that π<θ<π, and so excluded the case in which z is real and negative. In this case the straight line from 1 to z passes through 0, and is therefore not admissible as a path of integration. Both π and π are values of amz, and θ is equal to one or other of them: also r=z. The values of logz are still the values of log|z|+iamz, viz. log(z)+(2k+1)πi, where k is an integer. The values log(z)+πi and log(z)πi correspond to paths from 1 to z lying respectively entirely above and entirely below the real axis. Either of them may be taken as the principal value of logz, as convenience dictates. We shall choose the value log(z)+π i corresponding to the first path.

2. The real and imaginary parts of any value of logz are both continuous functions of x and y, except for x=0, y=0.

3. The functional equation satisfied by logz. The function logz satisfies the equation (1)logz1z2=logz1+logz2, in the sense that every value of either side of this equation is one of the values of the other side. This follows at once by putting z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2), and applying the formula above. It is however not true that (2)logz1z2=logz1+logz2 in all circumstances. If, e.g., z1=z2=12(1+i3)=cos23π+isin23π, then logz1=logz2=23πi, and logz1+logz2=43πi, which is one of the values of logz1z2, but not the principal value. In fact logz1z2=23πi.

An equation such as (1), in which every value of either side is a value of the other, we shall call a complete equation, or an equation which is completely true.

4. The equation logzm=mlogz, where m is an integer, is not completely true: every value of the right-hand side is a value of the left-hand side, but the converse is not true.

5. The equation log(1/z)=logz is completely true. It is also true that log(1/z)=logz, except when z is real and negative.

6. The equation log(zazb)=log(za)log(zb) is true if z lies outside the region bounded by the line joining the points z=a, z=b, and lines through these points parallel to OX and extending to infinity in the negative direction.

7. The equation log(azbz)=log(1az)log(1bz) is true if z lies outside the triangle formed by the three points Oab.

8. Draw the graph of the function I(logx) of the real variable x. [The graph consists of the positive halves of the lines y=2kπ and the negative halves of the lines y=(2k+1)π.]

9. The function f(x) of the real variable x, defined by πf(x)=pπ+(qp)I(logx), is equal to p when x is positive and to q when x is negative.

10. The function f(x) defined by πf(x)=pπ+(qp)I{log(x1)}+(rq)imag(logx) is equal to p when x>1, to q when 0<x<1, and to r when x<0.

11. For what values of z is (i) logz (ii) any value of logz (a) real or (b) purely imaginary?

12. If z=x+iy then loglogz=logR+i(Θ+2kπ), where R2=(logr)2+(θ+2kπ)2 and Θ is the least positive angle determined by the equations cosΘ:sinΘ:1::logr:θ+2kπ:(logr)2+(θ+2kπ)2. Plot roughly the doubly infinite set of values of loglog(1+i3), indicating which of them are values of loglog(1+i3) and which of loglog(1+i3).


220. Definition of the logarithmic function Main Page 222–224. The exponential function