| \(\dfrac{dy}{dx}\) | \( \leftarrow y \rightarrow\) | \(\int y\, dx\) |
Algebraic. |
||
| \(1\) | \(x\) | \(\frac{1}{2} x^2 + C\) |
| \(0\) | \(a\) | \(ax + C\) |
| \(1\) | \(x \pm a\) | \(\frac{1}{2} x^2 \pm ax + C\) |
| \(a\) | \(ax\) | \(\frac{1}{2} ax^2 + C\) |
| \(2x\) | \(x^2\) | \(\frac{1}{3} x^3 + C\) |
| \(nx^{n-1}\) | \(x^n\) | \(\dfrac{1}{n+1} x^{n+1} + C\) |
| \(-x^{-2}\) | \(x^{-1}\) | \(\log_\epsilon x + C\) |
| \(\dfrac{du}{dx} \pm \dfrac{dv}{dx} \pm \dfrac{dw}{dx}\) | \(u \pm v \pm w\) | \(\int u\, dx \pm \int v\, dx \pm \int w\, dx\) |
| \(u\, \dfrac{dv}{dx} + v\, \dfrac{du}{dx}\) | \(uv\) | No general form known |
| \(\dfrac{v\, \dfrac{du}{dx} – u\, \dfrac{dv}{dx}}{v^2}\) | \(\dfrac{u}{v}\) | No general form known |
| \(\dfrac{du}{dx}\) | \(u\) | \(ux – \int x\, du + C\) |
Exponential and Logarithmic. |
||
| \(\epsilon^x\) | \(\epsilon^x\) | \(\epsilon^x + C\) |
| \(x^{-1}\) | \(\log_\epsilon x\) | \(x(\log_\epsilon x – 1) + C\) |
| \(0.4343 \times x^{-1}\) | \(\log_{10} x\) | \(0.4343x (\log_\epsilon x – 1) + C\) |
| \(a^x \log_\epsilon a\) | \(a^x\) | \(\dfrac{a^x}{\log_\epsilon a} + C\) |
Trigonometrical. |
||
| \(\cos x\) | \(\sin x\) | \(-\cos x + C\) |
| \(-\sin x\) | \(\cos x\) | \(\sin x + C\) |
| \(\sec^2 x\) | \(\tan x\) | \(-\log_\epsilon \cos x + C\) |
Circular (Inverse). |
||
| \(\dfrac{1}{\sqrt{(1-x^2)}}\) | \(\arcsin x\) | \(x \cdot \arcsin x + \sqrt{1 – x^2} + C\) |
| \(-\dfrac{1}{\sqrt{(1-x^2)}}\) | \(\arccos x\) | \(x \cdot \arccos x – \sqrt{1 – x^2} + C\) |
| \(\dfrac{1}{1+x^2}\) | \(\arctan x\) | \(x \cdot \arctan x – \frac{1}{2} \log_\epsilon (1 + x^2) + C\) |
Hyperbolic. |
||
| \(\cosh x\) | \(\sinh x\) | \(\cosh x + C\) |
| \(\sinh x\) | \(\cosh x\) | \(\sinh x + C\) |
| \(\text{sech}^2 x\) | \(\tanh x\) | \(\log_\epsilon \cosh x + C\) |
| \(\epsilon^x\) | \(\epsilon^x\) | \(\epsilon^x + C\) |
| \(x^{-1}\) | \(\log_\epsilon x\) | \(x(\log_\epsilon x – 1) + C\) |
| \(0.4343 \times x^{-1}\) | \(\log_{10} x\) | \(0.4343x (\log_\epsilon x – 1) + C\) |
| \(a^x \log_\epsilon a\) | \(a^x\) | \(\dfrac{a^x}{\log_\epsilon a} + C\) |
Miscellaneous. |
||
| \(-\dfrac{1}{(x + a)^2}\) |
$\dfrac{1}{x + a}$ |
$\log_\epsilon (x+a) + C$ |
|
$-\dfrac{x}{(a^2 + x^2)^{\frac{3}{2}}}$ |
\(\dfrac{1}{\sqrt{a^2 + x^2}}\) |
\(\log_\epsilon (x + \sqrt{a^2 + x^2}) + C\) |
|
\(\mp \dfrac{b}{(a \pm bx)^2}\) |
\(\dfrac{1}{a \pm bx}\) |
\(\pm \dfrac{1}{b} \log_\epsilon (a \pm bx) + C\) |
|
\(-\dfrac{3a^2x}{(a^2 + x^2)^{\frac{5}{2}}}\) |
\(\dfrac{a^2}{(a^2 + x^2)^{\frac{3}{2}}}\) |
\(\dfrac{x}{\sqrt{a^2 + x^2}} + C\) |
|
\(a \cdot \cos ax\) |
\(\sin ax\) |
\(-\dfrac{1}{a} \cos ax + C\) |
|
\(-a \cdot \sin ax\) |
\(\cos ax\) |
\(\dfrac{1}{a} \sin ax + C\) |
|
\(a \cdot \sec^2ax\) |
\(\tan ax\) |
\(-\dfrac{1}{a} \log_\epsilon \cos ax + C\) |
|
\(\sin 2x\) |
\(\sin^2 x\) |
\(\dfrac{x}{2} – \dfrac{\sin 2x}{4} + C\) |
|
\(-\sin 2x\) |
\(\cos^2 x\) |
$\dfrac{x}{2} + \dfrac{\sin 2x}{4} + C $ |
|
$ 2a\cdot\sin 2ax$ |
$\sin^2 ax$ |
$\dfrac{x}{2} – \dfrac{\sin 2ax}{4a} + C $ |
|
$-2a\cdot\sin 2ax$ |
$\cos^2 ax$ |
$\dfrac{x}{2} + \dfrac{\sin 2ax}{4a} + C $ |