From the result of the last section and the equations (1) of § 228 it follows at once that \[\cos z = 1 – \frac{z^{2}}{2!} + \frac{z^{4}}{4!} – \dots,\quad \sin z = z – \frac{z^{3}}{3!} + \frac{z^{5}}{5!} – \dots\] for all values of \(z\). These results were proved for real values of \(z\) in Ex. LVI. 1.
2. Prove that \(|\cos z| \leq \cosh|z|\) and \(|\sin z| \leq \sinh|z|\).
3. Prove that if \(|z| < 1\) then \(|\cos z| < 2\) and \(|\sin z| < \frac{6}{5}|z|\).
4. Since \(\sin 2z = 2\sin z \cos z\) we have \[(2z) – \frac{(2z)^{3}}{3!} + \frac{(2z)^{5}}{5!} – \dots = 2\left(z – \frac{z^{3}}{3!} + \dots\right) \left(1 – \frac{z^{2}}{2!} + \dots\right).\] Prove by multiplying the two series on the right-hand side (§ 195) and equating coefficients (§ 194) that \[\binom{2n + 1}{1} + \binom{2n + 1}{3} + \dots + \binom{2n + 1}{2n + 1} = 2^{2n}.\] Verify the result by means of the binomial theorem. Derive similar identities from the equations \[\cos^{2}z + \sin^{2}z = 1,\quad \cos2z = 2\cos^{2}z – 1 = 1 – 2\sin^{2}z.\]
5. Show that \[\exp\{(1 + i)z\} = \sum_{0}^{\infty} 2^{\frac{1}{2}n} \exp(\tfrac{1}{4}n\pi i) \frac{z^{n}}{n!}.\]
6. Expand \(\cos z \cosh z\) in powers of \(z\). [We have \[\begin{aligned} \cos z \cosh z + i\sin z \sinh z &= \cos\{(1 – i)z\} = \tfrac{1}{2} [\exp\{(1 + i)z\} + \exp\{-(1 + i)z\}]\\ &= \tfrac{1}{2} \sum_{0}^{\infty} 2^{\frac{1}{2}n} \{1 + (-1)^{n}\} \exp(\tfrac{1}{4}n\pi i) \frac{z^{n}}{n!},\end{aligned}\] and similarly \[\cos z \cosh z – i\sin z \sinh z = \cos (1 + i)z = \tfrac{1}{2} \sum_{0}^{\infty} 2^{\frac{1}{2}n} \{1 + (-1)^{n}\} \exp(-\tfrac{1}{4}n\pi i) \frac{z^{n}}{n!}.\] Hence \[\cos z \cosh z = \tfrac{1}{2} \sum_{0}^{\infty} 2^{\frac{1}{2}n}\{1 + (-1)^{n}\} \cos \tfrac{1}{4}n\pi \frac{z^{n}}{n!} = 1 – \frac{2^{2}z^{4}}{4!} + \frac{2^{4}z^{8}}{8!} – \dots.]\]
7. Expand \(\sin z \sinh z\), \(\cos z \sinh z\), and \(\sin z \cosh z\) in powers of \(z\).
8. Expand \(\sin^{2} z\) and \(\sin^{3} z\) in powers of \(z\). [Use the formulae \[\sin^{2} z = \tfrac{1}{2} (1 – \cos 2z),\quad \sin^{3} z = \tfrac{1}{4} (3\sin z – \sin 3z),\ \dots.\] It is clear that the same method may be used to expand \(\cos^{n} z\) and \(\sin^{n} z\), where \(n\) is any integer.]
9. Sum the series \[C = 1 + \frac{\cos z}{1!} + \frac{\cos 2z}{2!} + \frac{\cos 3z}{3!} +\dots,\quad S = \frac{\sin z}{1!} + \frac{\sin 2z}{2!} + \frac{\sin 3z}{3!} + \dots.\]
[Here \[\begin{aligned} C + iS &= 1 + \dfrac{\exp(iz)}{1!} + \dfrac{\exp(2iz)}{2!} + \dots = \exp\{\exp(iz)\} \\ &= \exp(\cos z) \{\cos(\sin z) + i\sin(\sin z)\},\end{aligned}\] and similarly \[C – iS = \exp\{\exp(-iz)\} = \exp(\cos z)\{\cos(\sin z) – i\sin(\sin z)\}.\] Hence \[C = \exp(\cos z)\cos(\sin z),\quad S = \exp(\cos z)\sin(\sin z).]\]10. Sum \[1 + \frac{a\cos z}{1!} + \frac{a^{2}\cos 2z}{2!} + \dots,\quad \frac{a\sin z}{1!} + \frac{a^{2}\sin 2z}{2!} + \dots.\]
11. Sum \[1 – \frac{\cos 2z}{2!} + \frac{\cos 4z}{4!} – \dots,\quad \frac{\cos z}{1!} – \frac{\cos 3z}{3!} + \dots\] and the corresponding series involving sines.
12. Show that \[1 + \frac{\cos 4z}{4!} + \frac{\cos 8z}{8!} + \dots = \tfrac{1}{2}\{\cos(\cos z) \cosh(\sin z) + \cos(\sin z) \cosh(\cos z)\}.\]
13. Show that the expansions of \(\cos(x + h)\) and \(\sin(x + h)\) in powers of \(h\) (Ex. LVI. 1) are valid for all values of \(x\) and \(h\), real or complex.
$\leftarrow$ 232. The power series for \(\exp z\) | Main Page | 234–235. The logarithmic series $\rightarrow$ |