Sometimes one is stumped by finding that the expression to be differentiated is too complicated to tackle directly.

Thus, the equation y=(x2+a2)32 is awkward to a beginner.

Now the dodge to turn the difficulty is this: Write some symbol, such as u, for the expression x2+a2; then the equation becomes y=u32, which you can easily manage; for dydu=32u12. Then tackle the expression u=x2+a2, and differentiate it with respect to x, dudx=2x. Then all that remains is plain sailing;

dydx=dydu×dudx;dydx=32u12×2x=32(x2+a2)12×2x=3x(x2+a2)12

and so the trick is done.

By and bye, when you have learned how to deal with sines, and cosines, and exponentials, you will find this dodge of increasing usefulness.

 

Examples.

Let us practise this dodge on a few examples.

Example 1
Differentiate y=a+x.
Solution
Let a+x=u. dudx=1;y=u12;dydu=12u12=12(a+x)12.dydx=dydu×dudx=12a+x.
Example 2
Differentiate y=1a+x2.
Solution
Let a+x2=u. dudx=2x;y=u12;dydu=12u32.dydx=dydu×dudx=x(a+x2)3.

Example 3
Differentiate y=(mnx23+px43)a.
Solution
Let mnx23+px43=u. dudx=23nx1343px73;y=ua;dydu=aua1.dydx=dydu×dudx=a(mnx23+px43)a1(23nx13+43px73).

Example 4
Differentiate y=1x3a2.

Solution
Let u=x3a2. dudx=3x2;y=u12;dydu=12(x3a2)32.dydx=dydu×dudx=3x22(x3a2)3.

Example 5
Differentiate y=1x1+x.

Solution
Write this as y=(1x)12(1+x)12. dydx=(1+x)12d(1x)12dx(1x)12d(1+x)12dx1+x.

(We may also write y=(1x)12(1+x)12 and differentiate as a product.)

Proceeding as in  (1) above, we get d(1x)12dx=121x;andd(1+x)12dx=121+x.

Hence

dydx=(1+x)122(1+x)1x(1x)122(1+x)1+x=121+x1x1x2(1+x)3;or dydx=1(1+x)1x2.

Example 6
Differentiate y=x31+x2.

Solution
We may write this y=x32(1+x2)12;dydx=32x12(1+x2)12+x32×d[(1+x2)12]dx.

Differentiating (1+x2)12, as shown in  (2) above, we get d[(1+x2)12]dx=x(1+x2)3; so that dydx=3x21+x2x5(1+x2)3=x(3+x2)2(1+x2)3.

Example 7
Differentiate y=(x+x2+x+a)3.

Solution
Let x+x2+x+a=u. dudx=1+d[(x2+x+a)12]dx.y=u3;anddydu=3u2=3(x+x2+x+a)2.

Now let (x2+x+a)12=v and (x2+x+a)=w.

dwdx=2x+1;v=w12;dvdw=12w12.dvdx=dvdw×dwdx=12(x2+x+a)12(2x+1).Hence dudx=1+2x+12x2+x+a,dydx=dydu×dudx=3(x+x2+x+a)2(1+2x+12x2+x+a).

Example 8
Differentiate y=a2+x2a2x2a2x2a2+x23.

Solution
We get y=(a2+x2)12(a2x2)13(a2x2)12(a2+x2)13=(a2+x2)16(a2x2)16.dydx=(a2+x2)16d[(a2x2)16]dx+d[(a2+x2)16](a2x2)16dx.

Let u=(a2x2)16 and v=(a2x2). u=v16;dudv=16v76;dvdx=2x.dudx=dudv×dvdx=13x(a2x2)76.

Let w=(a2+x2)16 and z=(a2+x2). w=z16;dwdz=16z56;dzdx=2x.dwdx=dwdz×dzdx=13x(a2+x2)56.

Hence

dydx=(a2+x2)16x3(a2x2)76+x3(a2x2)16(a2+x2)56;or dydx=x3[a2+x2(a2x2)76+1(a2x2)(a2+x2)5]6].

Example 9
Differentiate yn with respect to y5.

Solution
d(yn)d(y5)=nyn15y51=n5yn5.

Example 10
Find the first and second differential coefficients of y=xb(ax)x.

Solution

dydx=xbd{[(ax)x]12}dx+(ax)xb.

Let [(ax)x]12=u and let (ax)x=w; then u=w12.

Hence dydx=x(a2x)2b(ax)x+(ax)xb=x(3a4x)2b(ax)x.

Now d2ydx2=2b(ax)x(3a8x)(3ax4x2)b(a2x)(ax)x4b2(ax)x=3a212ax+8x24b(ax)(ax)x.

(We shall need these two last differential coefficients later on. See chapter 12 .)


Exercises VI

Differentiate the following:

(1) y=x2+1. (2) y=x2+a2.
(3) y=1a+x. (4) y=aax2.
(5) y=x2a2x2. (6) y=x4+a3x3+a2.

(7) y=a2+x2(a+x)2.

(8) Differentiate y5 with respect to y2.

(9) Differentiate y=1θ21θ.

Answers to Exercises
(1) xx2+1. (2) xx2+a2. (3) 12(a+x)3.
(4) ax(ax2)3. (5) 2a2x2x3x2a2. (6) 32x2[89x(x3+a)(x4+a)](x4+a)23(x3+a)32
(7) 2a(xa)(x+a)3.
(8) 52y3. (9) 1(1θ)1θ2.


 

The process can be extended to three or more differential coefficients, so that dydx=dydz×dzdv×dvdx.

Examples.

Example 1
If z=3x4;v=7z2;y=1+v, find dvdx.

Solution
We have dydv=121+v;dvdz=14z3;dzdx=12x3.dydx=168x3(21+v)z3=283x59x8+7.

Example 2
If t=15θ;x=t3+t2;v=7x2x13, find dvdθ.

Solution

dvdx=7x(5x6)3(x1)43;dxdt=3t2+12;dtdθ=110θ3.Hence dvdθ=7x(5x6)(3t2+12)30(x1)43θ3,

an expression in which x must be replaced by its value, and t by its value in terms of θ.

Example 3
  If θ=3a2xx3;ω=1θ21+θ;and ϕ=31ω2, find dϕdx.

Solution
We get θ=3a2x12;ω=1θ1+θ;andϕ=312ω1.dθdx=3a22x3;dωdθ=1(1+θ)1θ2 (see example 5); and dϕdω=12ω2.

So that dθdx=12×ω2×1(1+θ)1θ2×3a22x3.

Replace now first ω, then θ by its value.


Exercises VII.

You can now successfully try the following.

(1) If u=12x3;v=3(u+u2);and w=1v2, find dwdx.

(2) If y=3x2+2;z=1+y;and v=13+4z, find dvdx.

(3) If y=x33;z=(1+y)2;and u=11+z, find dudx.

 

Answers to Exercises

(1) dwdx=3x2(3+3x3)27(12x3+14x6)3.

(2) dvdx=12x1+2+3x2(3+41+2+3x2)2.

(3) dudx=x2(3+x3)[1+(1+x33)2]3.