1. $(A+B)^{2}=A^{2}+2AB+B^{2}$ | (Square of a Sum) |
2. $(A-B)^{2}=A^{2}-2AB+B^{2}$ | (Square of a Difference) |
3. $(A+B)^{3}=A^{3}+3A^{2}B+3AB^{2}+B^{3}$ | (Cube of a Sum) |
4. $(A-B)^{3}=A^{3}-3A^{2}B+3AB^{2}-B^{3}$ | (Cube of a Difference) |
Here $A$ and $B$ represent real numbers, variables, or algebraic expressions.
- Note than the Square of Difference formula can be obtained if we replace $B$ with $-B$ in the Square of Sum formula. Similarly replacing $B$ with $-B$ in the Cube of Sum formula yields the Cube of Difference formula.
Read more: Expansion of (A ± B)n
Collapse Expansion of (A ± B)n
In the above formulas, we reviewed the square and cube of the binomial $A+B$. The expansion of $(A+B)^{n}$ for any positive integer $n$ is
\[(A+B)^{n}=A^{n}+{n \choose 1}A^{n-1}B+{n \choose 2}A^{n-2}B+\cdots+{n \choose n-1}AB+B^{n}\]
and
\begin{align*}
(A-B)^{n}=A^{n}-{n \choose 1}A^{n-1}B+&\cdots+(-1)^{k}{n \choose k}A^{n-k}B^{k}\\
&+\cdots+(-1)^{n-1}{n \choose n-1}AB^{n-1}+(-1)^{n}B^{n}
\end{align*}
where
\[{n \choose k}=\frac{n!}{k!(n-k)!}\qquad(\text{read “n choose k”})\]
with $k!=1\times2\times3\times\cdots\times(k-1)\times k.$
For example,
\begin{align*}
(x+y)^{4} & =x^{4}+{4 \choose 1}x^{3}y+{4 \choose 2}x^{2}y^{2}+{4 \choose 3}x^{3}y+y^{4}\\
& =x^{4}+\frac{4!}{1!\times3!}x^{3}y+\frac{4!}{2!\times2!}x^{2}y^{2}+\frac{4!}{3!\times1!}x^{3}y+y^{4}\\
& =x^{4}+4x^{3}y+6x^{2}y^{2}+4xy^{3}+y^{4}
\end{align*}
5. $(x+A)(x+B)=x^{2}+(A+B)x+AB$ | (Product of two Binomials having a Common Term) |
6. $(A-B)(A+B)=A^{2}-B^{2}$ | (Product of Sum and Difference) |
7. $(A-B)(A^{2}+AB+B^{2})=A^{3}-B^{3}$ | (Difference of Cubes) |
8. $(A+B)(A^{2}-AB+B^{2})=A^{3}+B^{3}$ | (Sum of Cubes) |
- $(A+B+C)^2=A^2+B^2+C^2+2AB+2AC+2BC$
- $(A+B+C)^3=A^3+B^3+C^3+3A^2B+3AB^2+3A^2C+3AC^2+3B^2C+3BC^2$
Examples