(b) If \(f\) is the identity function, \(f(x)=x\), then \(f'(x)=1\).
This theorem states:
- The derivative of a constant is zero.
- The derivative of a variable with respect to itself is unity.
(a) Method 1: Let \(y=f(x)=c\). As \(x\) takes on an increment \(\Delta x\), the value of \(y\) does not change; that is \(\Delta y=0\), and \[\frac{\Delta y}{\Delta x}=0.\] Thus \[\frac{dy}{dx}=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=0.\] Method 2: Notice that zero divided by any number other than zero (no matter how small the number is) is zero. Because $c-c=0$ and $\Delta x$ approaches zero but is never equal to zero, we have $(c-c)/\Delta x=0.$ Theorem 2. Suppose \(f(x)\) and \(g(x)\) have derivatives \(f'(x)\) and \(g'(x)\) for the values of \(x\) considered. The following differentiation rules are valid. (a) Let \(y=\phi(x),u=f(x)\), and \(v=g(x)\). Thus \(y=u+v.\) (b) Let \(y=\phi(x)\) and \(u=f(x).\) Thus \(y=au.\) If \(x\) takes on an increment \(\Delta x\), \(u\) and \(y\) take on increments \(\Delta u\) and \(\Delta y\), respectively. (c) Let \(y=\phi(x),u=f(x)\), and \(v=g(x)\). Thus \(y=uv\). (d) Again \(y=\phi(x),u=f(x)\), and \(v=g(x)\). Thus \[y=\frac{u}{v}\qquad(v\neq0).\] Step 1: Assume \(y,u\), and \(v\) take on \(\Delta y\), \(\Delta u\), and \(\Delta v\), respectively, when \(x\) changes to \(x+\Delta x\). Thus \[y+\Delta y=\frac{u+\Delta u}{v+\Delta v}.\] Step 2: Computing (e) An increment \(\Delta x\) determines an increment \(\Delta u\), and this in turn determines an increment \(\Delta y\); that is, In fact, we may have $\Delta u=0$ for infinitely many values of $\Delta x$. If $\Delta u=0$, we cannot multiply and divide $\Delta y/\Delta x$ by $\Delta u$. To include this case as well, let’s define a new function $\alpha$: Expressing the chain rule as $\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}$ when $y=f(u)$ and $u=g(x)$ is sloppy. To be more precise, we have to write the chain rule as \[ \bbox[#F2F2F2,5px,border:2px solid black]{\left(\frac{dy}{dx}\right)_{x_0}=\left(\frac{dy}{du}\right)_{g(x_0)}\left(\frac{du}{dx}\right)_{x_0}.}\] This notation tells us that the derivative of $y$ with respect to $x$ at $x_0$ is equal to the derivative of $y$ with respect to $u$ at $g(x_0)$ multiplied by the derivative of $u$ with respect to $x$ at $x_0$. We can generalize Theorem 2 and say: In general, \[ \bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}x^r=r x^{r-1}\qquad r\in\mathbb{R}.}\] So far we have proved the above formula only when \(r\) is a rational number (= a number that can be written as the ratio of two integers). However, it will be shown that this formula holds true for any value of \(r\). This is called the Power Rule. We shall make use of this general result from now on. If $u$ is a differentiable function of $x$, then it follows from the Chain Rule and the Power Rule that \[ \bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}u^{r}=r u^{r-1}\frac{du}{dx}.}\] The derivative of a function with a constant exponent is equal to the product of the exponent, the function with the exponent diminished by unity, and the derivative of the function.Show the proofs
Hide the proofs
\[\begin{align} \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} & =\lim_{\Delta x\to0}\frac{c-c}{\Delta x}\\ & =0.\end{align}\]
(b) Method 1: Let \(y=f(x)=x\), and assume \(x\) takes on an increment \(\Delta x\). Therefore,
\[y+\Delta y=x+\Delta x\Rightarrow\Delta y=\Delta x\Rightarrow\frac{\Delta y}{\Delta x}=1\]
\[\therefore\frac{dy}{dx}=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=1.\]
Method 2:
\[\begin{align} \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} & =\lim_{\Delta x\to0}\frac{(x+\Delta x)-x}{\Delta x}\\ & =\lim_{\Delta x\to0}\frac{\Delta x}{\Delta x}\\ & =\lim_{\Delta x\to0}1=1.\end{align}\]
\[\phi'(x)=f'(g(x))g'(x).\]
If \(y=f(u)\) where \(u=g(x)\), then we can write the above equation as
\[\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}=f'(u)g'(x).\]
Show the proofs
Hide the proofs
Step 1: If \(x\) takes on an increment \(\Delta x\), then \(u\) and \(v\) take on \(\Delta u\) and \(\Delta v\), respectively. Thus: \[y+\Delta y=u+\Delta u+v+\Delta v\] Step 2: Subtracting \(y=u+v\) from \(y+\Delta y\) gives \[\Delta y=\Delta u+\Delta v.\] Step 3: Dividing both sides by \(\Delta x\), we get
\[\frac{\Delta y}{\Delta x}=\frac{\Delta u}{\Delta x}+\frac{\Delta v}{\Delta x}.\]
Step 4:
\[\begin{align} \frac{dy}{dx} & =\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}\\ & =\lim_{\Delta x\to0}\left(\frac{\Delta u}{\Delta x}+\frac{\Delta v}{\Delta x}\right)\\ & =\lim_{\Delta x\to0}\frac{\Delta u}{\Delta x}+\lim_{\Delta x\to0}\frac{\Delta v}{\Delta x}\\ & =\frac{du}{dx}+\frac{dv}{dx}\\ \phi'(x) & =f'(x)+g'(x).\end{align}\]
Step 1: \(y=cu\) and \[y+\Delta y=c(u+\Delta u)=cu+c\Delta u\] Step 2: Subtracting \(y=cu\) from \(y+\Delta y\) gives \[\Delta y=c\Delta u.\] Step 3: \[\frac{\Delta y}{\Delta x}=c\frac{\Delta u}{\Delta x}.\] Step 4:
\[\begin{align} \frac{dy}{dx} & =\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}\\ & =\lim_{\Delta x\to0}c\frac{\Delta u}{\Delta x}\\ & =c\lim_{\Delta x\to0}\frac{\Delta u}{\Delta x}\\ & =c\frac{du}{dx}\\ \phi'(x) & =cf'(x).\end{align}\]
Step 1: If \(x\) takes on an increment \(\Delta x\), then \(y,u\), and \(v\) take on \(\Delta y\), \(\Delta u\), and \(\Delta v\), respectively that are related by
\[\begin{align} y+\Delta y & =(u+\Delta u)(v+\Delta v)\\ & =uv+u\Delta v+v\Delta u+\Delta u\Delta v.\end{align}\]
Step 2: To find \(\Delta y\), we subtract \(y=uv\) from the above expression: \[\Delta y=u\Delta v+v\Delta u+\Delta u\Delta v.\] Step 3:
\[\frac{\Delta y}{\Delta x}=u\frac{\Delta v}{\Delta x}+v\frac{\Delta u}{\Delta x}+\Delta u\frac{\Delta v}{\Delta x}.\]
Step 4:
\[\begin{align} \frac{dy}{dx} & =\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}\\ & =\lim_{\Delta x\to0}\left(u\frac{\Delta v}{\Delta x}\right)+\lim_{\Delta x\to0}\left(v\frac{\Delta u}{\Delta x}\right)+\lim_{\Delta x\to0}\left(\Delta u\frac{\Delta v}{\Delta x}\right)\\ & =\left(\lim_{\Delta x\to0}u\right)\left(\lim_{\Delta x\to0}\frac{\Delta v}{\Delta x}\right)+\left(\lim_{\Delta x\to0}v\right)\left(\lim_{\Delta x\to0}\frac{\Delta u}{\Delta x}\right)+\left(\lim_{\Delta x\to0}\Delta u\right)\left(\lim_{\Delta x\to0}\frac{\Delta v}{\Delta x}\right).\end{align}\]
We note that as \(\Delta x\to0\), \(\Delta u\to0\) and \(\Delta v\to0\). Also \[\lim_{\Delta x\to0}u=\lim_{\Delta x\to0}u(x+\Delta x)=u(x),\] which is simply denoted by \(u\). Similarly \({\displaystyle \lim_{\Delta x\to0}v=v(x)}\). Thus
\[\begin{align} \frac{dy}{dx} & =u\frac{dv}{dx}+v\frac{du}{dx}+0\frac{dv}{dx}\\ & =u\frac{dv}{dx}+v\frac{du}{dx}\\ \phi'(x) & =f(x)g'(x)+g(x)f'(x).\end{align}\]
\(\Delta y\)
\[\begin{align} \Delta y & =\frac{u+\Delta u}{v+\Delta v}-\frac{u}{v}\\ & =\frac{(u+\Delta u)v-u(v+\Delta v)}{v(v+\Delta v)}\\ & =\frac{v\Delta u-v\Delta v}{v(v+\Delta v)}\end{align}\]
Step 3: Dividing \(\Delta y\) by \(\Delta x\)
\[\frac{\Delta y}{\Delta x}=\frac{v\dfrac{\Delta u}{\Delta x}-v\dfrac{\Delta v}{\Delta x}}{v(v+\Delta v)}\]
Step 4:
\[\begin{align} \frac{dy}{dx} & =\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}\\ & =_{}\frac{v{\displaystyle \lim_{\Delta x\to0}}\dfrac{\Delta u}{\Delta x}-v{\displaystyle \lim_{\Delta x\to0}}\dfrac{\Delta v}{\Delta x}}{{\displaystyle \lim_{\Delta x\to0}}v\;{\displaystyle \lim_{\Delta x\to0}}(v+\Delta v)}\\ & =\frac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{v\times v}\\ \phi'(x) & =\frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^{2}}.\end{align}\]
\[\begin{align} \Delta u & =g(x+\Delta x)-g(x),\\ \Delta y & =f(u+\Delta u)-f(u).\end{align}\]
Then evidently
\[\frac{\Delta y}{\Delta x}=\frac{\Delta y}{\Delta u}\cdot\frac{\Delta u}{\Delta x},\]
provided $\Delta u\neq 0$. Because \(u=g(x)\) is a continuous function \(\Delta u\to0\) as \(\Delta x\to0\). Thus
\[\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=\lim_{\Delta u\to0}\frac{\Delta y}{\Delta u}\cdot\lim_{\Delta x\to0}\frac{\Delta u}{\Delta x};\]
that is, \[\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx},\] or \[\phi'(x)=f'(g(x))g'(x).\]What if Δu =0?
$$\alpha(\Delta u)=\begin{cases}
\dfrac{f(u+\Delta u)-f(u)}{\Delta u}-f'(u) & \text{if }\Delta u\neq0\\[9pt]
0 & \text{if }\Delta u=0
\end{cases}.\tag{i}$$ Notice that in this definition $\alpha$ is a function of $\Delta u$ and $u$ is considered as a constant, so $f'(u)$ is just a number. Obviously $\alpha$ is a continuous function when $\Delta u\ne0$. Also $\alpha$ is continuous at $\Delta u=0$ because
$$
\begin{align*}
\lim_{\Delta u\to0}\alpha(\Delta u) & =\lim_{\Delta u\to0}\left(\frac{f(u+\Delta u)-f(u)}{\Delta u}-f'(u)\right)\\
& =\lim_{\Delta u\to0}\frac{f(u+\Delta u)-f(u)}{\Delta u}-\lim_{\Delta u\to0}f'(u)&&{\small \text{(Limit laws)}}\\
& =f'(u)-f'(u)=0=\alpha(0).&&{\small \text{(Definition of derivative)}}
\end{align*}
$$
It follows from (i) that
$$
f(u+\Delta u)-f(u)=\Delta u\left[\alpha(\Delta u)+f'(u)\right].\tag{ii}
$$
This equation is valid whether or not $\Delta u=0.$ Now we are ready to investigate the derivative of $\phi(x)$:
$$
\begin{align*}
\lim_{\Delta x\to 0}\frac{\phi(x+\Delta x)-\phi(x)}{\Delta x}=& =\lim_{\Delta x\to0}\frac{f\big(\overbrace{g(x+\Delta x)}^{u+\Delta u}\big)-f\big(\overbrace{g(x)}^{u}\big)}{\Delta x} &&{\small \text{($\phi=f\circ g$)}}\\[9pt]
& =\lim_{\Delta x\to0}\frac{f(u+\Delta u)-f(u)}{\Delta x}\\[9pt]
& =\lim_{\Delta x\to0}\frac{\Delta u\left[\alpha(\Delta u)+f'(u)\right]}{\Delta x}&&{\small \text{(Use (ii))}}\\[9pt]
& =\left(\lim_{\Delta x\to0}\frac{\Delta u}{\Delta x}\right)\left(\lim_{\Delta x\to0}\alpha(\Delta u)+\lim_{\Delta x\to0}f'(u)\right)&&{\small \text{(Limit laws)}}
\end{align*}
$$
Since as $\Delta x\to0$, $\Delta u\to0$, and as $\Delta u\to 0$, $\alpha(\Delta u)\to0$, we get
$$
\phi'(x)=\underbrace{g'(x)}_{du/dx}f'(u)=g'(x)f’\big(\underbrace{g(x)}_{u}\big).
$$
This completes the proof of the Chain Rule.
Read more about Theorem 2
Hide
The Power Rule