In this section, we learn some formulas that enable us to differentiate many functions without having to use the definition of a derivative.
Theorem 1. (a) If f is a constant function, f(x)=c where c is a constant, then f(x)=0.
(b) If f is the identity function, f(x)=x, then f(x)=1.

This theorem states:

  • The derivative of a constant is zero.
  • The derivative of a variable with respect to itself is unity.

 


Show the proofs


 

Theorem 2. Suppose f(x) and g(x) have derivatives f(x) and g(x) for the values of x considered. The following differentiation rules are valid.

  1. The Sum Rule: If ϕ(x)=f(x)+g(x), then ϕ(x) has a derivative ϕ(x)=f(x)+g(x).
  2. The Constant Multiple Rule: If ϕ(x)=af(x), where a is a constant, then ϕ(x) has a derivative ϕ(x)=af(x).
  3. The Product Rule: If ϕ(x)=f(x)g(x), then ϕ(x) has a derivative ϕ(x)=f(x)g(x)+f(x)g(x).
  4. The Quotient Rule: If ϕ(x)=f(x)g(x) and f(x)0, then ϕ(x) has a derivative ϕ(x)=f(x)g(x)f(x)g(x)[g(x)]2.
  5. The Chain Rule: If ϕ(x)=f(g(x)), then ϕ(x) has a derivative
    ϕ(x)=f(g(x))g(x).
    If y=f(u) where u=g(x), then we can write the above equation as
    dydx=dydududx=f(u)g(x).

Show the proofs


 

Expressing the chain rule as dydx=dydududx when y=f(u) and u=g(x) is sloppy. To be more precise, we have to write the chain rule as (dydx)x0=(dydu)g(x0)(dudx)x0. This notation tells us that the derivative of y with respect to x at x0 is equal to the derivative of y with respect to u at g(x0) multiplied by the derivative of u with respect to x at x0.

 


Read more about Theorem 2


 

 

Example 1

Given y=x2, differentiate y with respect to x.

Solution

We write y=f(x)g(x) where f(x)=x and g(x)=x. Thus
y=f(x)g(x)+f(x)g(x)=1x+x1=2x.

Example 2

Differentiate y=xn with respect to x where n>0 is an integer.

Solution

Using (a) we can write
y=(xxxn1 times)dxdx++(xxxn1 times)dxdx=xn11++xn11n times=nxn1.

Example 3

Find the derivative of y with respect to x if y=4x32x2+6x+5.

Solution

y=4×3x22×2x+6+0.=12x24x+6.

Example 4

  Prove ddxxn=nxn1, where n is a negative integer.

Solution

Let n=m, where m is a positive integer. Thus xn=xm=1xm. Using (d) in Theorem 2, we can write
ddx1xm=0×xmmxm1×1(xm)2=m=nxm1x2m=nxm12m=nxm1(m=n)=nxn1.
That is, ddxxn=nxn1

Example 5

Given y=1x3, find dydx.

Solution

Because y=x3,
ddxy=3x31=3x4=3x4.

Example 6

Given y=x  (x>0), find dydx.

Solution

Let f(x)=x and g(x)=f(x)f(x)=x.
g(x)=f(x)f(x)+f(x)f(x)=2f(x)f(x)
We know g(x)=1 (Theorem 1). Thus
1=2f(x)f(x)=2xf(x)
Finally f(x)=12x.

Example 7

Evaluate ddx13x2.

Solution

Let u=13x2 and y=u. Then
dydx=dydududx=(12u)(6x)=6x213x2=3x13x2.

Example 8

Find dydx if y=x1/n where n is an integer.

Solution

Let f(x)=x1/n and g(x)=[f(x)]n=f(x)f(x)n times=xn/n=x. Using (a), we have
g(x)=[f(x)]n1f(x)++[f(x)]n1f(x)n times=n[f(x)]n1f(x)1=n[x1/n]n1f(x).
Thus
f(x)=1nx(n1)/n=1nx11/n=1nx1n1.
That is ddxx1n=1nx1n1.

Example 9

Evaluate ddx4x23x5.

Solution

Let y=u1/5 and u=4x23x. Then
dydu=15u151=15u45=15(4x23x)45
dudx=8x3ddx(x1)=8x3(1x2)=8x+3x2.
Thus
dydx=dydududx=15(4x23x)45(8x+3x2)=(85x+35x2)1(4x23x)45.

Example 10

Differentiate f(x)=x21x3+1.

Solution

dfdx=2x(x3+1)3x2(x21)(x3+1)2=x4+3x2+2x(x3+1)2.

Example 11

Prove ddxun=nun1dudx, where n is a positive integer.

Solution

Let y=un and u=u(x). Then
dydx=dydududx=nun1dudx.

Example 12

Prove ddxxm/n=mnxmn1, where m and n are two integers.

Solution

Let y=um and u=x1/n. Then
dydx=dydududx=(mum1)(1nx1n1)=mn(x1/n)m1x1nn=mnxm1nx1nn=mnxmnn=mnxmn1.

In general

ddxuα=αuα1dudx.
So far we have proved the above formula only when α is a rational number (= a number that can be written as the ratio of two integers). However, it will be shown that this formula holds true for any value of α. We shall make use of this general result from now on.

The derivative of a function with a constant exponent is equal to the product of the exponent, the function with the exponent diminished by unity, and the derivative of the function.

Example 13

Differentiate y with respect to x given
y=(1x2)2+3(1x2)+1.

Solution

Let u=1/x2, then y=u2+3u+1.
dydx=dydududx=(2u+3)ddxx2=(2u+3)(2x3)=(2x2+3)(2x3)=4x56x3.

Example 14

If y=(x+1)x2+1, find dy/dx.

Solution

dydx=d(x+1)dxx2+1+(x+1)dx2+1dx=1×x2+1+(x+1)ddx(x2+1)1/2=x2+1+(x+1)[12(x2+1)1/2ddx(x2+1)]=x2+1+(x+1)[12(x2+1)1/2×2x]=x2+1+2x(x+1)2x2+1=x2+1x2+1+x(x+1)x2+1=2x2+x+1x2+1.

Example 15

If y=xx5+15, find dydx.

Solution

We write y=(xx5+1)1/5. Let u=x/(x2+1). Then y=u1/5 and
dydx=15u115 dudx=15(xx5+1)4/5ddx(xx5+1)=15(xx5+1)4/5×1×(x5+1)5x4×x(x5+1)2=15x4/5(x5+1)4/514x5(x5+1)2=15x4/514x5(x5+1)24/5=15x4/514x5(x5+1)6/5.

Example 16

If f(x)=x213 and g(x)=x41, find the derivative of gf(x) and the value of its derivative at x=3.

Solution

Let u=f(x)=x213 and y=g(u)=u41. Then

ddxgf(x)=g(u)f(x) or
dydx=dydududx(i)=4u3dudx.
To find du/dx, let u=v1/3 where v=x21. Thus
dudx=dudvdvdx=13v131(2x)=13(x21)2/32x(ii)=2x3(x21)23
Placing (ii) in (i), we get
dydx=4u32x3(x21)23=4(x213)32x3(x21)23=8x(x21)3(x21)23=83x(x21)23
And
dydx|x=3=83×3×(91)23=8×82/3=8×(23)2/3=16.