Before we start, recall that \[\lim_{x\to0}\frac{\sin x}{x}=0,\tag{a}\] also that \[\begin{align} \frac{dy}{dx} & =\lim_{h\to0}\frac{\sin(x+h)-\sin x}{h}\\ & =\lim_{h\to0}\frac{\sin x\cos h+\cos x\sin h-\sin x}{h}\\ & =\lim_{h\to0}\left(\sin x\frac{\cos h-1}{h}\right)\lim_{h\to0}\left(\cos x\frac{\sin h}{h}\right)\\ & =\sin x\times\lim_{h\to0}\frac{\cos h-1}{h}+\cos x\times\lim_{h\to0}\frac{\sin h}{h}\\ & =\sin x\times0+\cos x\times1\\ & =\cos x.\end{align}\] Therefore \[\bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}\sin x=\cos x.\tag{c}}\] \[\begin{align} \frac{dy}{dx} & =\lim_{h\to0}\frac{\cos(x+h)-\cos x}{h}\\ & =\lim_{h\to0}\frac{\cos x\cos h-\sin x\sin h-\cos x}{h}\\ & =\lim_{h\to0}\frac{\cos x(\cos h-1)-\sin x\sin h}{h}\\ & =\left(\lim_{h\to0}\frac{\cos x(\cos h-1)}{h}\right)-\left(\lim_{h\to0}\frac{\sin x\sin h}{h}\right)\\ & =\cos x\left(\lim_{h\to0}\frac{\cos h-1}{h}\right)-\sin x\left(\lim_{h\to0}\frac{\sin h}{h}\right)\\ & =\cos x\times0-\sin x\times1\\ & =-\sin x\end{align}\] Therefore \[\bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}\cos x=-\sin x.\tag{d}}\] To differentiate \(y=\tan x\), we write \(\tan x\) as \(\frac{\sin x}{\cos x}.\) Then we use \[\frac{d}{dx}\left(\frac{u}{v}\right)=\frac{u’v-v’u}{v^{2}}.\] Thus \[\begin{align} \frac{d}{dx}\tan x & =\frac{d}{dx}\frac{\sin x}{\cos x}\\ & =\frac{\cos x\cos x-(-\sin x)\sin x}{\cos^{2}x}\\ & =\frac{\cos^{2}x+\sin^{2}x}{\cos^{2}x}\\ & =\frac{1}{\cos^{2}x}\\ & =\sec^{2}x.\end{align}\] Similar to \(y=\tan x,\) we can differentiate \(y=\cot x.\) \[\begin{align} \frac{d}{dx}\cot x & =\frac{d}{dx}\frac{\cos x}{\sin x}\\ & =\frac{-\sin x\times\sin x-\cos x\times\cos x}{\sin^{2}x}\\ & =-\frac{\sin^{2}x+\cos^{2}x}{\sin^{2}x}\\ & =-\frac{1}{\sin^{2}x}\\ & =-\csc^{2}x.\end{align}\] \[\frac{d}{dx}\cot x=-\csc^{2}x\] Because \[\frac{1}{\sin^{2}x}=\frac{\sin^{2}x+\cos^{2}x}{\sin^{2}x}=1+\cot^{2}x,\] we have \[\begin{align} \frac{d}{dx}\sec x & =\frac{d}{dx}\frac{1}{\cos x}\\ & =\frac{0\times\cos x-(-\sin x)\times1}{\cos^{2}x}\\ & =\frac{\sin x}{\cos^{2} x}\\ & =\frac{\sin x}{\cos x}\frac{1}{\cos x}\\ & =\tan x\ \sec x\end{align}\] \[\bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}\sec x=\tan x \sec x}\] \[\begin{align} \frac{d}{dx}\csc x & =\frac{d}{dx}\frac{1}{\sin x}\\ & =\frac{0\times\sin x-\cos x\times1}{\sin^{2}x}\\ & =\frac{-\cos x}{\sin^{2}x}\\ & =-\frac{\cos x}{\sin x}\frac{1}{\sin x}\\ & =-\cot x\ \csc x.\end{align}\] \[\bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}\csc x=-\cot x \csc x}\] Tip for memorizing these formulas: The three “co-” functions (cosine of x, cotangent of x, and cosecant of x) have minus signs in front of their derivatives.Show the prerequisite formulas
Hide the prerequisite formulas
\[\begin{align} \lim_{x\to0}\frac{\cos x-1}{x} & =\lim_{x\to0}\frac{2\sin^{2}\frac{x}{2}}{x}\\ & =\lim_{x\to0}\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\sin\frac{x}{2}\right)\\ & =\lim_{x\to0}\frac{\sin\frac{x}{2}}{\frac{x}{2}}\times\lim_{x\to0}\sin\frac{x}{2}\\ & =\lim_{u\to0}\frac{\sin u}{u}\times\lim_{x\to0}\sin u\tag{$\textrm{let } u=\frac{x}{2}$}\\ & =1\times0\\ & =0,\tag{b}\end{align}\]
and
\[\begin{align} \sin(A+B) & =\sin A\cos B+\cos A\sin B\\ \cos(A+B) & =\cos A\cos B-\sin A\sin B.\end{align}\]
The derivative of \(y=\sin x\)
Show the derivation
Hide the derivation
The derivative \(y=\cos x\)
Show the derivation
Hide the derivation
The derivative of \(y=\tan x\)
Show the derivation
Hide the derivation
That is, \[\frac{d}{dx}\tan x=\sec^{2}x.\] Also we recall that
\[\frac{1}{\cos^{2}x}=\frac{\sin^{2}+\cos^{2}x}{\cos^{2}x}=\tan^{2}x+1.\]
Therefore, we can also write
The derivative of \(y=\cot x\)
Show the derivation
Hide the derivation
The derivative of \(y=\sec x\)
Show the derivation
Hide the derivation
The derivative of \(y=\csc x\)
Show the derivation
Hide the derivation