Suppose we want to evaluate an integral of the form \[\int f(g(x))g'(x)dx\tag{a}\] To this end, let \(g(x)=u.\) Finding the differential of both sides, we have
\[g'(x)dx=du.\tag{b}\] If we substitute (b) into (a), we will have \[\bbox[#F2F2F2,5px,border:2px solid black]{\int f(\underbrace{g(x)}_{u})\underbrace{g'(x)dx}_{du}=\int f(u)du.\tag{c}}\] This equation supplies us with a method for determining integrals in a large number of cases in which the form of the integral is not obvious.
Theorem 1. (The Substitution Rule): Suppose \(g(x)\) is a differentiable function the range of which is an interval \(I\), and \(f\) is a function defined on \(I\). Also suppose \(F(x)=\int f(x)dx\) for \(x\in I\). Then if \(u=g(x),\) we have \[\int f(g(x))g'(x)dx=\int f(u)du=F(u)+C=F(g(x))+C.\]
Show the proof …
Hide the proof
Because \(F’=f\) it follows from the chain rule that \[\begin{aligned} \frac{d}{dx}F(g(x)) & =F'(g(x))g'(x)\\ & =f(g(x))g'(x).\end{aligned}\] It follows from the definition of antiderivative (or integral) that \[\begin{align*} \int f(g(x))g'(x)dx & =F(g(x))+C\\ & =F(u)+C\tag{${u=g(x)}$}\\ & =\int F'(u)du\\ & =\int f(u)du. \end{align*}\]
- Because traditionally the letter \(u\) is used in the Substitution Rule, it is sometimes called \(u\)-substituiton, but instead of \(u\), we can use any letter such as \(t,w,\theta,\) etc.
Example 1
Evaluate \({\displaystyle \int(x^{2}+3)^{17}x\ dx}\).
Solution 1
Let \(u=x^{2}+3\), thus \(du=2xdx,\) or \(\frac{1}{2}du=xdx\). Now we can rewrite the integral as \[\begin{aligned} {\displaystyle \int\underbrace{(x^{2}+3)^{17}}_{u^{17}}\underbrace{xdx}_{\frac{1}{2}du}} & =\int\frac{1}{2}u^{17}du\\ & =\frac{1}{2}\frac{u^{18}}{18}+C\\ & =\frac{1}{36}(x^{2}+3)^{18}+C.\end{aligned}\]
Example 2
Evaluate \({\displaystyle \int x^{2}\sqrt{x^{3}+1}\ dx}\).
Solution 2
Let \(u=x^{3}+1\). Then \(du=3x^{2}\ dx\) or \(x^{2}dx=\frac{1}{3}du\), and \[\begin{align*} \int x^{2}\sqrt{x^{3}+1}\ dx & =\int\sqrt{\underbrace{x^{3}+1}_{=u}}\ \overbrace{x^{2}dx}^{\frac{1}{3}du}\\ & =\int\frac{1}{3}\sqrt{u}\ du\\ & =\frac{1}{3}\int u^{1/2}du\tag{${u^{1/2}=\sqrt{u}}$}\\ & =\frac{1}{3}\left(\frac{2}{3}u^{3/2}\right)+C\tag{${\int u^{\alpha}du=\frac{1}{\alpha+1}u^{\alpha+1}+C}$}\\ & =\frac{2}{9}(x^{3}+1)^{3/2}+C.\tag{${u=x^{3}+1}$} \end{align*}\]
Formula (c) may be stated as an algorithm as follows
- Choose \(u\), say put \(g(x)=u\).
- Compute \(du=g'(x)dx\).
- Substitute \(u\) and \(du\) in the integral. At this step, everything should be expressed in terms of \(u\) and no \(x\) should be present in the integral. If it is not possible, make another choice for \(u\).
- Evaluate the resulting integral.
- Replace \(u\) by \(g(x)\) and express the final result in terms of \(x\).
Example 3
Evaluate \[\int\sin ax\ dx,\quad\text{and}\quad\int\cos ax\ dx.\]
Solution 3
Let \(u=ax\). Then \(du=a\ dx\) and \[\begin{aligned} \int\sin ax\ dx & =\frac{1}{a}\int\sin u\ du\\ & =-\frac{1}{a}\cos u+C\\ & =-\frac{1}{a}\cos ax+C.\end{aligned}\] Similarly \[\int\cos ax\ dx=\frac{1}{a}\sin ax+C.\]
A simple substitution is so useful that is worth noting explicitly.
Theorem 2. If \(\int f(u)du=F(u)+C\), then \[\int f(ax+b)\,dx=\frac{1}{a}F(ax+b)+C,\]where \(a\) and \(b\) are two constants.
Show the proof …
Hide the proof
Let \(u=ax+b\). Then \(du=a\ dx\) or \(dx=\frac{1}{a}du\) and \[\begin{align*} \int f(ax+b)dx & =\int\frac{1}{a}f(u)\ du\\ & =\frac{1}{a}F(u)+C\\ & =\frac{1}{a}F(ax+b)+C\tag{${u=ax+b}$} \end{align*}\]
Example 4
Evaluate (a)\({\displaystyle \int\sec^{2}(x-1)dx}\) (b) \({\displaystyle \int\sin(2x-\pi/4)}dx\).
Solution 4
(a) Because \(\int\sec^{2}x\ dx=\tan x+C\), it follows from the above theorem that \[\int\sec^{2}(x-1)\ dx=\tan(x-1)+C.\] (b) Since \(\int\sin x\ dx=-\cos x+C\), the above theorem gives \[\int\sin(2x-\pi/4)\ dx=-\frac{1}{2}\cos(2x-\pi/4)+C\]
Example 5
Evaluate\({\displaystyle \int\cos^{2}x\ \sin x\ dx}\).
Solution 5
Let \(u=\cos x\). Then \[du=-\sin xdx\] and \[\begin{aligned} \int\cos^{2}x\sin xdx & =-\int u^{2}du\\ & =-\frac{u^{3}}{3}+C\\ & =-\frac{1}{3}\cos^{3}x+C.\end{aligned}\]
Example 6
Evaluate \[\int\tan x\ dx.\]
Solution 6
Recall that \(\tan x=\sin x/\cos x\). Let \(u=\cos x\). Then \[du=-\sin x\ dx\] and \[\begin{aligned} \int\tan x\ dx & =\int\frac{\sin x}{\cos x}dx\\ & =\int\frac{-du}{u}\\ & =-\ln|u|+C\\ & =-\ln|\cos x|+C.\end{aligned}\] Recall that \(\ln x^{\alpha}=\alpha\ln x\). So \[\begin{aligned} -\ln|\cos x|+C & =\ln\left(|\cos x|^{-1}\right)+C\\ & =\ln|\sec x|+C.\end{aligned}\] Therefore, the result can also be written as \[\int\tan x\ dx=\ln|\sec x|+C.\]
\[\bbox[#F2F2F2,5px,border:2px solid black]{\int\tan x\ dx=\ln|\sec x|+C\quad\text{or}\quad-\ln|\cos x|+C}\]
Example 7
Evaluate \[\int\sec x \tan x\,dx.\]
Solution 7
Previously, we had provided this integral: $\int \sec x\tan x\, dx=\sec x+C$. We can verify this formula by differentiating the answer. Without guessing the answer, we can integrate it by substitution:
Recall that $\sec x=1/\cos x$ and $\tan x=\sin x/\cos x$. Therefore,
\begin{align}
\int \sec x\tan x\, dx&=\int \frac{1}{\cos x}\frac{\sin x}{\cos x}\,dx\\
&=\int\frac{\sin x}{\cos^2 x}dx\\
&=\int \frac{-du}{u^2}\quad &&{\small (u=\cos x,\ du=-\sin x\,dx)}\\
&=-(-1)u^{-1}+C=\frac{1}{u}+C\\
&=\frac{1}{\cos x}+C\quad &&{\small (u=\cos x)}\\
&=\sec x+C.
\end{align}
Example 8
Evaluate \[\int \csc x \cot x\,dx.\]
Solution 8
Previously, we had provided this integral: $\int \csc x\cot x\, dx=-\csc x+C$. We can verify this formula by differentiating the answer. Instead of guessing the answer, because $\csc x=1/\sin x$ and $\cot x=\cos x/\sin x$, we can evaluate this integral by making the substitution $u=\sin x$:
\begin{align}
\int \csc x\cot x\, dx&=\int \frac{1}{\sin x}\frac{\cos x}{\sin x}\,dx\\
&=\int\frac{\cos x}{\sin^2 x}dx\\
&=\int \frac{-du}{u^2}\quad &&{\small (u=\sin x,\ du=\cos x\,dx)}\\
&=-u^{-1}+C=-\frac{1}{u}+C\\
&=-\frac{1}{\sin x}+C\quad &&{\small (u=\sin x)}\\
&=-\csc x+C.
\end{align}
Example 9
Evaluate \[\int\frac{1}{a^{2}+x^{2}}dx.\]
Solution 9
\[\int\frac{1}{a^{2}+x^{2}}dx=\frac{1}{a^{2}}\int\frac{1}{1+\left(\frac{x}{a}\right)^{2}}dx.\] Let \(u=x/a\). Then \[dx=a\ du\] and \[\begin{aligned} \frac{1}{a^{2}}\int\frac{1}{1+(x/a)^{2}}dx & =\frac{1}{a^{2}}\int\frac{1}{1+u^{2}}a\ du\\ & =\frac{1}{a}\arctan u+C\\ & =\frac{1}{a}\arctan\frac{x}{a}+C.\end{aligned}\] To evaluate \(\int\frac{1}{1+(x/a)^{2}}dx\), we could simply use Theorem above.
Example 10
Evaluate $\displaystyle{\int\frac{x}{x^4+1}dx}$.
Solution 10
Let $u=x^2$. Then $du=2x\,dx$ and
\begin{align}
\int\frac{x}{x^4+1}dx&=\int \frac{1}{u^2+1}\overbrace{\frac{du}{2}}^{xdx}\\
&=\frac{1}{2}\arctan u+C\\
&=\frac{1}{2}\arctan x^2+C.\tag{$u=x^2$}
\end{align}
Example 11
Evaluate \[\int\frac{1}{x^{2}+2x+5}dx.\] [Hint: Complete the square in the denominator]
Solution 11
By completing the square in the denominator, we have \[\begin{aligned} \int\frac{1}{x^{2}+2x+5}dx & =\int\frac{dx}{(x^{2}+2x+1)+4}\\ & =\int\frac{dx}{(x+2)^{2}+2^{2}}.\end{aligned}\] Now let \(u=x+2\). Then \(du=dx\) and \[\begin{align*} \int\frac{dx}{(x+2)^{2}+1} & =\int\frac{du}{u^{2}+4}\\ & =\frac{1}{2}\arctan\frac{u}{2}+C\tag{from previous example}\\ & =\frac{1}{2}\arctan\frac{x+2}{2}+C. \end{align*}\]
Example 12
Evaluate \({\displaystyle \int a^{x}dx}\).
Solution 12
Let \(a^{x}=e^{u}\). Taking the natural logarithm of each side, we get \[\begin{aligned} \ln(a^{x}) & =\ln e^{u}\\ x\ln a & =u.\end{aligned}\] Thus \[x\ln a=u\Rightarrow\ln a\,dx=du.\] Now we can write \[\begin{aligned} \int a^{x}dx & =\int e^{u}\frac{du}{\ln a}\\ & =\frac{1}{\ln a}e^{u}+C\\ & =\frac{1}{\ln a}a^{x}+C.\end{aligned}\]
Example 13
Evaluate \[\int e^{ax}dx.\]
Solution 13
We can directly use Theorem above or use the substitution \(u=ax\). The substitution leads to \[du=a\ dx\] and \[\begin{aligned} \int e^{ax}dx & =\int e^{u}\frac{du}{a}\\ & =\frac{1}{a}\int e^{u}du\\ & =\frac{1}{a}e^{u}+C\\ & =\frac{1}{a}e^{ax}+C.\end{aligned}\]
Example 14
Evaluate \[\int\frac{e^{x}}{1+e^{2x}}dx.\]
Solution 14
Note that the substitution \(u=1+e^{2x}\) does not work because \(du=2e^{2x}dx(\neq e^{x}dx)\) does not appear in the numerator. But if we notice that \(1+e^{2x}=1+(e^{x})^{2}\), we can make the subtitution \(u=e^{x}\) to make the denominator of the form \(1+u^{2}\). Then \[u=e^{x}\Rightarrow du=e^{x}\ dx\] and \[\begin{align*} \int\frac{e^{x}}{1+e^{2x}}dx & =\int\frac{du}{1+u^{2}}\\ & =\arctan u+C\\ & =\arctan e^{x}+C.\tag{${u=e^{x}}$} \end{align*}\]
Example 15
Evaluate \({\displaystyle \int\sinh x\ dx}\) and \({\displaystyle \int\cosh x\ dx}\).
Solution 15
Because \((\cosh x)’=\sinh x\), we know that \[\int\sinh x\ dx=\cosh x+C.\] Also we can use the definition of \(\sinh x\) for evaluation of the integral: \[\sinh x=\frac{e^{x}-e^{-x}}{2}\] [Recall that \(\sinh x\) (similar to \(\sin x\)) is an odd function, so it is half of \(e^x{\color{red}-}e^{-x}\) and \(\cosh x\) (similar to \(\cos x\)) is an even function, so it is half of \(e^x{\color{red}+}e^{-x}\).] \[\begin{aligned} \int\sinh x\ dx & =\frac{1}{2}\int(e^{x}-e^{-x})\ dx\\ & =\frac{1}{2}\left[e^{x}-(-e^{-x})\right]+C\\ & =\cosh x+C\end{aligned}\] Similarly we can show \[\int\cosh x\ dx=\sinh x+C.\]
\[\bbox[#F2F2F2,5px,border:2px solid black]{\begin{array}{c} {\displaystyle \int\sinh x\ dx=\cosh x+C}\\ {\displaystyle \int\cosh x\ dx=\sinh x+C} \end{array}}\]
Example 16
Evaluate \({\displaystyle \int\tanh x\ dx}\).
Solution 16
\[\int\tanh x\ dx=\int\frac{\sinh x}{\cosh x}dx.\] Let \(u=\cosh x\). Then \(du=\sinh x\ dx\) and \[\begin{aligned} \int\frac{\sinh x}{\cosh x}dx & =\int\frac{du}{u}\\ & =\ln|u|+C\\ & =\ln|\cosh x|+C.\end{aligned}\] Because \(\cosh x=(e^{x}+e^{-x})/2>0\), so \(|\cosh x|=\cosh x\) and \[\int\tanh x\ dx=\ln(\cosh x)+C.\]
Example 17
Evaluate \[\int\frac{\sqrt[x]{7}}{x^{2}}dx.\]
Solution 17
Note that \(\sqrt[x]{7}=7^{1/x}.\) If we let \(\frac{1}{x}=u\), because \[\frac{1}{x}=u\Rightarrow-\frac{1}{x^{2}}dx=du,\] we have \[\int\frac{\sqrt[x]{7}}{x^{2}}dx=-\int7^{u}du=-\frac{1}{\ln7}7^{u}+C=-\frac{1}{\ln7}\sqrt[x]{7}+C.\]
Example 18
Evaluate \[\int\frac{dx}{x\ln x}.\]
Solution 18
Let \(u=\ln x\), then \[du=\frac{1}{x}dx\] and \[\begin{align*} \int\underbrace{\frac{1}{\ln x}}_{u}\underbrace{\frac{1}{x}dx}_{du} & =\int\frac{du}{u}\\ & =\ln|u|+C\\ & =\ln|\ln x|+C\tag{${u=\ln x}$} \end{align*}\]
Example 19
Evaluate \[\int\frac{\sin(\ln x)}{x}dx.\]
Solution 19
Let \(u=\ln x\), then \[du=\frac{1}{x}dx.\] So \[\begin{aligned} \int\frac{\sin(\ln x)}{x}dx & =\int\sin u\ du\\ & =-\cos u+C\\ & =-\cos(\ln x)+C.\end{aligned}\]
Example 20
Evaluate \[\int\frac{x}{1+x^{4}}\arctan x^{\text{2}}\ dx.\]
Solution 20
Let \(u=\arctan x^{2}\), then \[\begin{aligned} du & =2x\frac{1}{1+(x^{2})^{2}}dx\\ & =\frac{2x}{1+x^{4}}dx.\end{aligned}\] Therefore \[\begin{aligned} \int\frac{x}{1+x^{4}}\arctan x^{2}\ dx & =\int\frac{1}{2}\underbrace{\arctan x^{2}}_{u}\underbrace{\frac{2x}{1+x^{4}}dx}_{du}\\ & =\frac{1}{4}u^{2}+C\\ & =\frac{1}{4}\arctan^{2}x^{2}+C.\end{aligned}\]