In the previous section, we learned that the Fundamental Theorem of Calculus says that if f is continuous on [a,x], then ddxaxf(t)dt=f(x)

Example 1

Verify that ddx1xf(t)dt=f(x) for f(t)=t2.

Solution 1

First, let’s find 1xf(t)dt: 1xt2dt=t33]1x=x3313 Now we differentiate the result ddx(x3313)=x2=f(x). So the formula holds.

Example 2

Let F(x)=1x12+2t+t2dt. Find F(3).

Solution 2

Because t2+2t+2=(t+1)2+1 is never zero, the integrand f(t)=12+2t+t2 is continuous everywhere (including on [1,3]).

[Recall that a rational function R(x)=P(x)Q(x) where P and Q are two polynomials is continuous at x=a if Q(a)0.]

Therefore, we can apply the Fundamental Theorem of Calculus and conclude F(3)=f(3)=12+2(3)+32=117.

We may use the chain rule in conjuction with the first part of the Fundamental Theorem of Calculus to find the derivative if the upper limit or the lower limit integration is a function. For example, if F(x)=ag(x)f(t)dt, to find F(x), let u=g(x). Then
dFdx=dFdududx=(dduauf(t)dt)g(x)=f(u)g(x) (by the Fundamental Theorem of Calculus)=f(g(x))g(x)(u=g(x)).

Example 3

Find S(x), if S(x)=0x2sinttdt.

Solution 3

Let u=x2. Then S(x)=(ddu0usinttdt)dudx=(sinuu)(2x)(u=x2)=sinx2x2(2x)=2sinx2x

Example 4

Find ddx(x2x3lnt dt),x>0.

Solution 4

We write x2x3lnt dt=x2clnt dt+cx3lnt dt=cx2lnt dt+cx3lnt dt, where c is an arbitrary constant. Because the derivative of a sum is the sum of derivatives, we have ddx(x2x3lnt dt)=ddx(cx2lnt dt)+ddx(cx3lnt dt). Now we can differentiate with respect to x like the previous example: ddx(cx2lnt dt)(u=x2)=(dduculnt dt)dudx=(lnu)(2x)=(lnx2)(2x)=2xlnx2. ddx(cx3lnt dt)(v=x3)=(ddvcvlnt dt)dvdx=(lnv)(3x2)=3x2lnx3. Therefore, ddx(x2x3lnt dt)=2xlnx2+3x2lnx3 We may further simplify the result using the fact that lnxr=rlnx. So ddx(x2x3lnt dt)=4xlnx+9x2lnx=x(9x4)lnx.

Example 5

Find limx0+04x2sintdtx3.

Solution 5

Because as x0, 04x2sint dt0,x30, we have an indeterminate limit of type 0/0. So we can apply l’Hôpital’s rule: limx0+04x2sintdtx3=Hlimx0+ddx04x2sint dtddxx3. Because ddx04x2sint dt(u=4x2)=(ddu0usint dt)dudx=(sinu)(8x)=8xsin4x2, we get limx0+ddx04x2sint dtddxx3=limx0+8xsin4x23x2=limx0+8xsin2x3x2(4x2=|2x|=2x, x>0)=limx0+83sin2xx=H83limx0+2cos2x1=163.

Example 6

Find dy/dx if y is implicitly defined by the following equation: 0yet2dt+0x2sint dt=0.

Solution 6

Using implicit differentiation, we get ddx(0yet2dt)+ddx(0x2sint dt)=0 ddy(0yet2dt)dydx+ddx(0x2sint dt)=0

By Part 1 of the Funamental Theorem of Calculus (FTC1): 

ey2dydx+ddx(0x2sint dt)=0

(u=x2)ey2dydx+ddu(0usint dt)dudx=0 (FTC1)ey2dydx+sinududx=0 (u=x2)ey2dydx+(sinx2)(2x)=0 dydx=1ey22x sinx2=2x ey2x2.