5.13 Derivatives of the Inverse Trigonometric Functions
In the previous section, we learned the relation between the derivative of a function and that of its inverse. Because we know the derivatives of trigonometric functions, in this section we derive the derivatives of the inverse trigonometric functions.
If \(y=\cos x\), then \(x=\arccos y\) and \(0\leq x\leq\pi\) \[\begin{align} \frac{d}{dy}\arccos y & =\frac{1}{\frac{d}{dx}\cos x}\\ & =\frac{1}{-\sin x}\\ & =\frac{-1}{\sqrt{1-\cos^{2}x}}\tag{${\sin x\geq0\text{ when }0\leq x\leq\pi}$}\\ & =\frac{-1}{\sqrt{1-y^{2}}}\end{align}\]
With a change in notation we can express the above result as \[\frac{d}{dx}\arccos x=-\frac{1}{\sqrt{1-x^{2}}}.\]
Derivative of the Inverse of Tangent
Recall
\(v=\arctan u=\tan^{-1}u\) means \(u=\tan v\) and \(-\frac{\pi}{2}\leq v\leq\frac{\pi}{2}\).
We can show that \[\bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}\arctan x=\frac{d}{dx}\tan^{-1}x=\frac{1}{1+x^{2}}.}\]
Example 4
Find\[\frac{d}{dx}\arctan x\quad\text{ or }{\quad\frac{d}{dx}\tan^{-1}x}\]
Solution
If \(y=\tan x\), then \(x=\arctan y\) and \(-\pi/2\leq x\leq\pi/2\) \[\begin{align} \frac{d}{dy}\arctan y & =\frac{1}{\dfrac{d}{dx}\tan x}\\ & =\frac{1}{1+\tan^{2}x}\\ & =\frac{1}{1+y^{2}}\end{align}\]
With a change in notation, we get \[\frac{d}{dx}\arctan x=\frac{1}{1+x^{2}}.\]