In the previous section, we learned the relation between the derivative of a function and that of its inverse. Because we know the derivatives of trigonometric functions, in this section we derive the derivatives of the inverse trigonometric functions.

Recall (f1)(y)=1f(x)=1f(f1(y))

Derivative of the Inverse of Sine

Recall:

v=arcsinu means u=sinv and π2vπ2.

We can show that

ddxarcsinx=ddxsin1x=11x2,(1<x<1).

Figure 1: The graphs of y=arcsinx and y=sinx.

 

Example 1

Find ddxarcsinx

Solution

Let y=sinx. Then x=arcsiny and π/2xπ/2

ddyarcsiny=1ddxsinx=1cosx=11sin2x(cosx0 when π2xπ2)=11y2(sinx=y)

With a change in notation we can express the above result as
ddxarcsinx=11x2.

Example 2

Find ddx(arcsinx2).

Solution

Letting u=x2

ddxarcsinx2=dduarcsinuddxu=11u2(2x)=2x1x4.

 

Derivative of the Inverse of Cosine

Recall

v=arccosu=cos1u means u=cosv and 0vπ.

We can show that

ddxarccosx=ddxcos1x=11x2,(1<x<1).

Figure 2: The graphs of y=arccosx and y=cosx

 

Example 3

Find ddxarccosxorddxcos1x

Solution

If y=cosx, then x=arccosy and
0xπ
ddyarccosy=1ddxcosx=1sinx(sinx0 when 0xπ)=11cos2x=11y2
With a change in notation we can express the above result as
ddxarccosx=11x2.

 

Derivative of the Inverse of Tangent

Recall

v=arctanu=tan1u means u=tanv and π2vπ2.

We can show that
ddxarctanx=ddxtan1x=11+x2.

 

Figure 3: The graphs of y=arctanx and y=tanx.
Example 4
Findddxarctanx or ddxtan1x
Solution

If y=tanx, then x=arctany and π/2xπ/2
ddyarctany=1ddxtanx=11+tan2x=11+y2
With a change in notation, we get ddxarctanx=11+x2.