Show the prerequisite formulas


 
The derivative of y=sinx

Show the derivation

(c)ddxsinx=cosx.

 

The derivative y=cosx

Show the derivation

(d)ddxcosx=sinx.

 

  • sinx and cosx are differentiable everywhere.
  • You need to memorize formulas (c) and (d).

 

The derivative of y=tanx

To differentiate y=tanx, we write tanx as sinxcosx. Then we use ddx(uv)=uvvuv2. 

Show the derivation

ddxtanx=sec2x=1+tan2x.

 
The derivative of y=cotx

Similar to y=tanx, we can differentiate y=cotx.

Show the derivation

ddxcotx=csc2x=(1+cot2x).

 

The derivative of y=secx

Show the derivation

ddxsecx=tanxsecx

 

The derivative of y=cscx

Show the derivation

ddxcscx=cotxcscx

 

Tip for memorizing these formulas:

The three “co-” functions (cosine of x, cotangent of x, and cosecant of x) have minus signs in front of their derivatives.

Example 1

Differentiate (a) y=sinax, (b) y=cosax, (c) y=tanax.

Solution

(a) Let u=ax . Thus y=sinu and
dydx=dydududx=cosu×a=acosax
(b) Similar to (a), let u=ax and y=cosu. Therefore,
dydx=sinu×a=asinax.
(c) Similar to (a) and (b), let u=ax and y=tanu. We can show
dydx=(ddutanu)(ddx(ax))=a(1+tan2ax).

Example 2

Differentiate y=sin2x.

Solution

Note that y=sin2x=(sinx)2.

Method 1: We write y=u2 with u=sinx

dydx=dydududx=2ucosx=2sinxcosx.
Method 2: We write y=sin2x=12(1cos2x).
dydx=12(2sin2x)=sin2x.
Note that the results of both methods are the same, as sin2x=2sinxcosx.

Example 3

Differentiate y=sin2x.

Solution

Let y=u2, u=sinv, and v=x. Using the chain rule, we have
dydx=dydududvdvdx=(2u)(cosv)(12x)=(2sinv)(cosx)(12x)=(2sinx)(cosx)(12x).
We can make it concise by using the identity
sin2θ=2sinθcosθ:
dydx=sin(2x)2x.

Example 4

If z=cos(sin3x2), find dz/dx.

Solution

Let z=cosu, u=t3, t=sinw, and w=x2. Then
dzdx=dzdududtdtdwdwdx=sinu×3t2×cosw×2x
Now we write u,t, and w in terms of x:
dzdx=sint3×3sin2w×cosx2×2x=6sin(sin3w)×sin2x2×cosx2×x=6x(cosx2)(sin2x2)sin(sin3x2).