In this section, we learn:
Finite Limits at Infinity
Consider the function $f$ defined by the equation
\[
f(x)=\frac{x+1}{x+2}.
\]
Let’s investigate the behavior of $f$ when $x$ is positive and becomes larger and larger. From the following table and the graph of $f$ (Figure 1), we see that $f(x)$ gets closer and closer to 1. In other words, we can make $f(x)$ arbitrarily close to 1 if we choose $x$ sufficiently large. In this case, we say $f$ approaches 1 (or $f$ has limit 1) as $x$ approaches infinity and we write
\[
\lim_{x\to\infty}f(x)=1.
\]
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
x & 10 & 100 & 1000 & 10,000 & 100,000 & 1,000,000 & …\\
\hline
\hline
f(x) & 0.916667 & 0.990196 & 0.99002 & 0.9999 & 0.99999 & 0.999999 & …\\
\hline
\end{array}
Figure 1: Graph of $y=\frac{x+1}{x+2}$. |
Now let’s investigate the behavior of $f$ when $x$ is negative and its magnitude becomes larger and larger. In this case, we see from the following table and the graph of $f$ that $f(x)$ gets closer and closer to 1 too. In this case, we say $f$ approaches 1 (or $f$ has limit 1) as $x$ approaches minus infinity and write
\[
\lim_{x\to-\infty}f(x)=1.
\]
[Here is a coincidence that $\lim_{x\to+\infty}f(x)=\lim_{x\to-\infty}f(x)=1$].
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
x & … & –1,000,000 & –100,000 & –10,000 & –1000 & –100 & –10\\
\hline
\hline
f(x) & … & 1.000001 & 1.00001 & 1.00010002 & 1.001002 & 1.010204 & 0.818182\\
\hline
\end{array}
In general, if the graph of $f$ gets closer and closer to the horizontal line $y=L$ as $x$ gets larger and larger, we say the limit of $f$as $x$ approaches $\infty$ is $L$ and write
\[
\lim_{x\to+\infty}f(x)=L.
\]
Instead of $+\infty$ we may simply write $\infty$.
- Again $\infty$ is a symbol and does not represent a number.
- Alternatively when $\lim_{x\to\infty}f(x)=L$, we may say:
- $f(x)$ approaches $L$ as $x$ approaches infinity
- the limit of $f(x)$, as $x$ approaches infinity, is $L$
- the limit of $f(x)$, as $x$ increases without bound, is $L$
- the limit of $f(x)$, as $x$ becomes infinite, is $L$
- the limit of $f$ at (plus) infinity is $L$.
The precise definition is as follows: The geometrical meaning of the above definition is illustrated in Figure 3. We can show that for a constant number $c$ If $f(x)\to L$ and $g(x)\to M$ as $x\to\infty$ or $x\to-\infty$ then The next theorem is helpful when evaluating limits at infinity. (2) (3) Figure 4 Figure 5 Figure 6 We just prove the first part. The second and third parts are clear from their graphs (see Figures 5(a,b), and 6) First, let us show If $f(x)$ gets larger and larger as $x$ gets larger and larger, we write The precise definition is as follows. It can be shown that the theorems in the Section on Infinite Limits carry over without change if $x\to a$ is replaced by $x\to+\infty$ or $x\to-\infty$, namely where infinity can be $+\infty$ or $-\infty$ The end behavior of the power functions $y=x^{n}$ ($n$ is an integer) for some special values of $n$ is illustrated in Figure 7. The general results are \[ \bbox[#F2F2F2,5px,border:2px solid black]{\lim_{x\to+\infty}x^{n}=+\infty,\quad n=1,2,3,4,\cdots}\tag{i}\] and \[ \bbox[#F2F2F2,5px,border:2px solid black]{\lim_{x\to-\infty}x^{n}=\begin{cases} Figure 7 As explained above, a nonzero number multiplied by infinity is $+\infty$ or $-\infty$. Therefore, the limit of $ax^{n}$ does not affect the limit if $a>0$ and reverses the sign if $a<0$.
If the limit of $f(x)$ as $x$ approaches $+\infty$ (or $-\infty$) does not exist and it does not approaches $+\infty$ or $-\infty$, then $f(x)$is said to oscillate as $x$ approaches infinity. In this case, if $f(x)$ is bounded, we say $f(x)$ oscillates finitely, and otherwise infinitely. The trigonometric functions are periodic and they do not approach any values (inlcuding $+\infty$ and $-\infty$) as $x$ approaches$\pm\infty$. The sine and cosine functions osciallate finitely (between $-1$ and $1$) and the tangent and cotangent osciallate infinitely. \[\bbox[#F2F2F2,5px,border:2px solid black]{\lim_{x\to\pm\infty}\sin x=\text{does not exist}\qquad \[\bbox[#F2F2F2,5px,border:2px solid black]{ Figure 9: Trignonmetric functions fail to have limits as $x\to+\infty$ or $x\to-\infty$ Suppose $\lim_{x\to+\infty}f(x)=L$. Let $u=1/x$. As $x\to+\infty$, $u$ approaches zero through positive values. Therefore, we can say Similarly if $u=1/x$, as $x\to-\infty$, $u$ approaches zero through negative values, $u\to0^{-}$, and we can show The exact definition of limits at infinity
Hide the exact definition
\[
|f(x)-L|<\epsilon\qquad\text{whenever}\qquad x>M.
\]
When this is the case, we may write
\[
\lim_{x\to+\infty}f(x)=L,
\]
or
\[
f(x)\to L\ \text{as }\ x\to+\infty.
\]
Figure 2: For every given $\epsilon>0$, the graph of $y=f(x)$ lies between $y=L-\epsilon$ and $y=L+\epsilon$ when $x$ is large enough.
\[
\lim_{x\to-\infty}f(x)=L.
\]
We say $f(x)$ approaches $L$ as $x$ approaches minus infinity
if for every given $\epsilon>0$, there exists a number $N<0$ such
that
\[
|f(x)-L|<\epsilon\quad\text{whenever}\quad x<N.
\]
Figure 3: $\lim_{x\to-\infty}f(x)=L$ means that for every given $\epsilon>0$, the graph of $y=f(x)$ lies between $y=L-\epsilon$ and $y=L+\epsilon$ when $x$ is sufficiently large negative.
\[
\lim_{x\to\infty}c=c\qquad\lim_{x\to-\infty}c=c
\]
Also the limit laws (Theorems 2 and 5 in Section 4.4) carry over without changes to limits at $+\infty$ or $-\infty$, namely:
\[
\lim_{x\to+\infty}\frac{1}{x^{r}}=0,\qquad\lim_{x\to-\infty}\frac{1}{x^{r}}=0
\]
The second limit is valid only if $x^{r}$ is defined when $x<0$.
\[
\lim_{x\to+\infty}e^{-x}=0,\qquad\lim_{x\to-\infty}e^{x}=0.
\]
\[
\lim_{x\to+\infty}\arctan x=\frac{\pi}{2},\qquad\lim_{x\to-\infty}\arctan x=-\frac{\pi}{2}.
\]
[Another notation for the inverse of tangent is $\tan^{-1} x$.]
(a) $\lim_{x\to\pm\infty}\dfrac{1}{x^{3}}=0$
(b) $\lim_{x\to\pm\infty}\dfrac{1}{x^{1/3}}=0$
(a) $\lim_{x\to-\infty}e^{x}=0$
(b) $\lim_{x\to+\infty}e^{-x}=0$
Figure 6: Graph of $y=\arctan x$ (or $y=\tan^{-1}x$). $\lim_{x\to-\infty}\arctan x=-\frac{\pi}{2}$ and $\lim_{x\to\infty}\arctan x=\frac{\pi}{2}$
Show the proof
Hide the proof
\[
\lim_{x\to+\infty}\frac{1}{x}=0.
\]
For a given $\epsilon>0$, we need to find $M>0$ such that
\[
\left|\frac{1}{x}-0\right|<\epsilon\ \text{ whenever } x>M
\]
Because $x>0$
\[
\left|\frac{1}{x}-0\right|=\frac{1}{x}<\epsilon,
\]
and we can rewrite the above inequality as [Recall if $a<b$ and $a$ and $b$ are both positive or both negative, then $1/a>1/b$. See property 7 in the Section on Inequalities]
\[
x>\frac{1}{\epsilon}.
\]
So if we choose $M>1/\epsilon$ then $x>M$ implies
\[
\left|\frac{1}{x}-0\right|<\epsilon.
\]
Similarly, we can show
\[
\lim_{x\to-\infty}\frac{1}{x}=0
\]
For a given $\epsilon>0$, we need to find $N<0$ such that
\[
\left|\frac{1}{x}-0\right|<\epsilon \text{ whenever \ }x<N
\]
Because $x<0$,
\[
\left|\frac{1}{x}-0\right|=\frac{-1}{x}<\epsilon
\]
which can be rewritten as [both $-1/x$ and $\epsilon$ are positive]
\[
-x>\frac{1}{\epsilon}
\]
or [multiplying each side of an inequality by a negative number reverses the direction of the inequality. Recall property 6 in the Section on Inequalities]
\[
x<-\frac{1}{\epsilon}
\]
If we choose $N<-1/\epsilon$, then
\[
x<N\implies\left|\frac{1}{x}-0\right|<\epsilon.
\]
Now we consider the general case when $r=m/n$ and show
\[
\lim_{x\to\pm\infty}\frac{1}{x^{m/n}}=0
\]
using the limit laws.
\begin{align*}
\lim_{x\to\pm\infty}\frac{1}{x^{m/n}} & =\lim_{x\to\pm\infty}\frac{1}{\sqrt[n]{x^{m}}}\\
& =\sqrt[n]{\lim_{x\to\pm\infty}\frac{1}{x^{m}}}\\
& =\sqrt[n]{\left(\lim_{x\to\pm\infty}\frac{1}{x}\right)^{m}}\\
& =\sqrt[n]{0^{m}}\\
& =0.
\end{align*}
Infinite Limits at Infinity
\[
\lim_{x\to+\infty}f(x)=+\infty
\]
[We may also write $\infty$ instead of $+\infty$.]
Show the precise definition
Hide the precise definition
\[
f(x)>K\qquad\text{whenever}\qquad x>M.
\]
When this condition is met, we may write
\[
\lim_{x\to+\infty}f(x)=+\infty.
\]
\[
\lim_{x\to+\infty}f(x)=-\infty,
\]
or
\[
\lim_{x\to-\infty}f(x)=+\infty\quad\text{or}\quad\lim_{x\to-\infty}f(x)=-\infty.
\]
Limits of $x^r$ as x →±∞
+\infty & n=2,4,6,\cdots\\
-\infty & n=1,3,5,\cdots
\end{cases}}\tag{ii}\]
\[ \bbox[#F2F2F2,5px,border:2px solid black]{\lim_{x\to+\infty}x^{m/n}=+\infty}\tag{iii}\]
and (b) if $n$ is odd
\[ \bbox[#F2F2F2,5px,border:2px solid black]{\lim_{x\to-\infty}x^{m/n}=\begin{cases}
+\infty & \text{if }m\text{ is even}\\
-\infty & \text{if }m\text{ is odd}
\end{cases}}\tag{iv}\]
Show the formal proof
Hide the formal proof
\[
x>M\implies x^{m/n}>K.
\]
For the formal proof of (b), we first prove that
\[
\lim_{x\to-\infty}x^{1/n}=-\infty.
\]
Because $n$ is odd, $\sqrt[n]{x}$ is defined for negative $x$. Let $C<0$ be given. To make $x^{1/n}$ less than $C$, we just need to choose $x<C^{n}$
\[
x<N=C^{n}\implies\sqrt[n]{x}<C.
\]
[For example, if $n=3$ and $C=-10$, then
\[
x<-1000=(-10)^{3}\implies\sqrt[3]{x}<-10]
\]
Because $x^{m/n}=(\sqrt[n]{x})^{m}$, by part (d) of Theorem 2 in Section 4.6, we have
\[
\lim_{x\to-\infty}\left(\sqrt[n]{x}\right)^{m}=\begin{cases}
+\infty & \text{if }m\text{ is even}\\
-\infty & \text{if }m\text{ is odd}
\end{cases}
\]
Show the informal proof
Hide the informal proof
\[
\underbrace{\infty\cdot\infty\cdots\infty}_{n\text{ times}}=\infty
\]
and if $n$ is odd $\sqrt[n]{-\infty}=-\infty$ because
\[
\underbrace{(-\infty)(-\infty)\cdots(-\infty)}_{n\text{ times }(n\text{ is odd})}=-\infty
\]
Therefore,
\begin{align*}
\lim_{x\to+\infty}x^{m/n} & =\lim_{x\to+\infty}(\sqrt[n]{x})^{m}\\
& =\left(\sqrt[n]{\lim_{x\to+\infty}x}\right)^{m}\\
& =\left(\sqrt[n]{+\infty}\right)^{m}\\
& =\left(+\infty\right)^{m}\\
& =+\infty
\end{align*}
and similarly
\begin{align*}
\lim_{x\to-\infty}x^{m/n} & =\left(\lim_{x\to-\infty}\sqrt[n]{x}\right)^{m}\\
& =\left(\sqrt[n]{\lim_{x\to-\infty}x}\right)^{m}\\
& =(-\infty)^{m}\\
& =\underbrace{(-\infty)\cdots(-\infty)}_{m\text{ times}}\\
& =\begin{cases}
+\infty & \text{if }m\text{ is even}\\
-\infty & \text{if }n\text{ is even}
\end{cases}
\end{align*}
\[ \bbox[#F2F2F2,5px,border:2px solid black]{\lim_{x\to\pm\infty}\left(f(x)x^{n}\right)=\begin{cases}
\lim_{x\to\pm\infty}x^{n} & \text{if }L>0\\
\text{indeterminate} & \text{if }L=0\\
-\lim_{x\to\pm\infty}x^{n} & \text{if }L<0
\end{cases}.}\] End Behavior of Trigonometric Functions
\lim_{x\to \pm\infty}\cos x=\text{does not exist}}\]
\lim_{x\to\pm\infty}\tan x=\text{does not exist}\qquad
\lim_{x\to \pm\infty}\cot x=\text{does not exist}}\]
(a) Graphs of $y=\sin x$ and $y=\cos x$
(b) Graphs of $y=\tan x$ and $y=\cot x$
Reducing Limits at Infinity to Limits at Zero
\[\lim_{x\to+\infty}f(x)=L\implies\lim_{u\to0^{+}}f\left(\frac{1}{u}\right)=L.\]
Conversely we can show if $\lim_{u\to0^{+}}f(1/u)=L$, then $\lim_{x\to+\infty}f(x)=L$.
\[ \bbox[#F2F2F2,5px,border:2px solid black]{\lim_{x\to+\infty}f(x)=L\quad\Longleftrightarrow\quad\lim_{u\to0^{+}}f\left(\frac{1}{u}\right)=L}\]
\[ \bbox[#F2F2F2,5px,border:2px solid black]{\lim_{x\to-\infty}f(x)=L\quad\Longleftrightarrow\quad\lim_{u\to0^{-}}f\left(\frac{1}{u}\right)=L}\]
So we have shown that any problem that involves limits at infinity can be reduced to a problem involving limits at zero, and vice versa.